

Managing WWW Browser’s Bookmarks and History
(a Mozilla Firefox Extension)

Ian Bugeja

Supervisor: Dr Chris Staff

Department of Computer Science and AI
University of Malta

June 2006

Submitted in partial fulfilment of the requirements for the
degree of B.Sc. I.T. (Hons.)

i

Declaration

Plagiarism is defined as “the unacknowledged use, as one’s work, of work of another

person, whether or not such work has been published” (Regulations Governing

Conduct at Examinations, 1997, Regulation 1(viii), University of Malta).

I, the undersigned, declare that the Final Year Project report submitted is my own

work, except where acknowledged and referenced.

I understand that the penalties for making a false declaration may include, but are not

limited to, loss of marks, cancellation of examination results, enforced suspension of

studies; or expulsion from the degree programme.

Name of student: Ian Bugeja

Thesis title: Managing WWW Browser’s Bookmark and History (a Mozilla Firefox

Extension)

Degree for which thesis is submitted: B.Sc. I.T. (Hons.)

Length of Thesis: Total number of pages: 146

 Main Document: 117

 Appendix A: 4

 Appendix B: 3

 Appendix C: 21

 Appendix D: 1

Extra media: CD containing a soft copy of this report and source code of the

extension.

Signature: ___________________________ Date: ____________________

ii

Abstract

All WWW Browsers offer bookmarks and history management features. The problem

with these features is the low level of functionality that is offered. Many third party

programs exist to offer the extra functionality, but these are not integrated with the

browser and run as separate tools. The main problem with bookmark files is that they

may become unorganized and grow linearly with time, possibly having duplicate

bookmarks and dead bookmarks. The history is not so much used as it is too vast

and complex to find a node from within it. For these reasons this thesis will present

HyperBK an extension for Mozilla Firefox which will offer additional functionality to the

browser’s bookmarks and history utilities. Such features include automatic

classification of bookmarks to their appropriate category, a thumbnail for each

bookmark, verification of bookmarks and even keeping a local copy on disk in case

the page is offline. On the other hand the history will be given a view where visited

pages are grouped into a structure similar to the bookmark categories, where the

user can apply some filters to ease his search even more. The last aspect of

HyperBK will be that of integrating with search engines using them to locate a

bookmarked page in case it has moved server or to provide ‘See Also’

recommendations for a particular bookmark category.

An evaluation was carried out to test the classification algorithm and the ‘See Also’

recommendations. The results obtained were quite promising as in fact 67% of

bookmarks used from real users were classified into the correct category. Regarding

the ‘See Also’ recommendations users rated them: 41% as ‘Good’, and another 41%

as ‘Really Good’.

iii

Acknowledgements

I dedicate this thesis to my parents, Michael and Marianne, for all their love,

encouragement, and support throughout my life and my education. Without them,

achieving this goal would not have been possible

I would like to express my gratitude to Dr Chris Staff, my supervisor, to whom I'm

indebted for his advice prior and throughout the formulation of this thesis and for the

helpful comments on the text.

iv

Table of Contents

TABLE OF CONTENTS ..IV
TABLE OF FIGURES ...VIII
TABLE OF TABLES ... X
CHAPTER 1: INTRODUCTION ... 1

1.1 MOTIVATION ... 1
1.2 AIMS OF THE PROJECT ... 2
1.3 THESIS OVERVIEW ... 3
1.4 ORGANIZATION OF DOCUMENT.. 4

CHAPTER 2: BACKGROUND AND SURVEY.. 6
2.1 INTRODUCTION ... 6
2.2 A SHORT WWW BROWSER HISTORY ... 6
2.3 LITERATURE REVIEW ... 7

2.3.1 Why and what is Bookmarked... 8
2.3.2 Page Revisits ... 9
2.3.3 Bookmark Management Systems ... 11
2.3.4 Features required in a Bookmark Management System ... 12

2.4 PORTER STEMMING ALGORITHM ... 14
2.5 DOCUMENT CLASSIFICATION ... 15
2.6 HOW CURRENT BROWSERS PRESENT BOOKMARKS AND HISTORY ... 17

2.6.1 Microsoft Internet Explorer 7 (Beta 2) .. 17
2.6.2 Opera (v8.5) ... 18
2.6.3 Maxthon Web Browser (v1.5) .. 20
2.6.4 Mozilla Firefox (v1.5) .. 20
2.6.5 Konqueror... 21
2.6.6 Best Browser Features ... 21

2.7 SUMMARY ... 21

CHAPTER 3: HYPERBK SPECIFICATION AND DESIGN... 23
3.1 INTRODUCTION ... 23
3.2 DESIGN CONSIDERATIONS ... 25
3.3 HYPERBK EXTENSION OVERVIEW .. 26

3.3.1 Webpage Parsing and Classification.. 26
3.4 HYPERBK FEATURES .. 29

3.4.1 Bookmark Menu .. 29

v

3.4.2 Add Bookmark Dialog ... 30
3.4.3 Bookmark Manager... 30
3.4.4 Fast Bookmarks... 31
3.4.5 The Bookmarks.. 32
3.4.6 The History ... 33
3.4.7 Storing the Bookmarks and History .. 34
3.4.8 Bookmark Caching.. 34
3.4.9 Bookmark Verification... 35
3.4.10 Page Relocation .. 35
3.4.11 History... 35
3.4.12 Bookmark Category See Also ... 36

3.5 THE SE REFERRER.. 37
3.6 SUMMARY ... 38

CHAPTER 4: BACKGROUND TO MOZILLA PLATFORM .. 39
4.1 INTRODUCTION ... 39
4.2 WHY MOZILLA FIREFOX ... 39
4.3 THE MOZILLA PLATFORM ... 39

4.3.1 XPCOM... 40
4.3.2 The Chrome ... 41
4.3.3 Overlays.. 41

4.4 TECHNOLOGIES USED.. 42
4.4.1 XUL.. 42
4.4.2 RDF ... 43
4.4.3 JavaScript... 46
4.4.4 SOAP and Web Services ... 47

4.5 SUMMARY ... 48

CHAPTER 5: IMPLEMENTATION .. 49
5.1 INTRODUCTION ... 49
5.2 INTEGRATING INTO FIREFOX .. 49

5.2.1 Building the Menus and Trees... 51
5.3 WEBPAGE PARSING ... 51
5.4 WEBPAGE CLASSIFICATION ... 53
5.5 BOOKMARK AND HISTORY DATA SOURCES ... 55
5.6 ADDING A BOOKMARK .. 57

5.6.1 Bookmark Name Reduction Algorithm ... 58
5.6.2 Adding a Category .. 59

5.7 OPERATIONS ON BOOKMARKS... 60
5.7.1 Bookmark Verification... 61

vi

5.7.2 Bookmark Manager with Thumbnails ... 61
5.7.3 Bookmark Import/Export... 62
5.7.4 First Bookmark Visit Tour... 63
5.7.5 Divide Category Wizard.. 63
5.7.6 Bookmark Relocation.. 65

5.8 HISTORY ... 66
5.8.1 History Views ... 67

5.9 SE REFERRER ... 68
5.10 SEE ALSO... 70

5.10.1 Using the SE Referrer for ‘See Also’.. 70
5.10.2 Using the top Keywords for ‘See Also’... 71

5.11 IN PAGE SUGGESTION ... 71
5.12 HYPERBK PREFERENCES ... 73
5.13 SUMMARY... 74

CHAPTER 6: TESTING AND EVALUATION .. 75
6.1 INTRODUCTION ... 75
6.2 TESTING ... 75

6.2.1 Detailed list of Tests Performed .. 77
6.2.2 Tests Summary.. 81

6.3 EVALUATION ... 81
6.3.1 Classification Algorithm Evaluation .. 81
6.3.2 Classification Results Obtained .. 83
6.3.3 See Also Evaluation.. 85
6.3.4 UI Evaluation.. 86

6.4 CLASSIFICATION AND BOOKMARK CATEGORY SUGGESTION PROBLEMS... 87
6.4.1 Pages with no text ... 87
6.4.2 Different Categories for the same topic ... 87
6.4.3 Better Classification .. 89

6.5 BOOKMARK RELATED PROBLEMS.. 90
6.5.1 Directory Index... 90
6.5.2 Bookmark URLs with Attribute Value pairs ... 90

6.6 SUMMARY ... 91

CHAPTER 7: CONCLUSION AND FUTURE WORK... 92
7.1 RESULTS ACHIEVED... 93
7.2 AIMS ACHIEVED.. 93
7.3 FUTURE WORK... 94

7.3.1 See Also ... 95
7.3.2 Detecting Page Changes ... 96

vii

7.3.3 Support for PDF and DOC ... 97
7.3.4 Higher UI Functionality ... 97
7.3.5 Power of the Semantic Web .. 97
7.3.6 Relation between bookmarked pages and history pages ... 98
7.3.7 Bookmark/History Sharing and Online Access ... 99

REFERENCES.. 101
BIBLIOGRAPHY .. 105
GLOSSARY .. 106
APPENDIX A: FURTHER IMPLEMENTATION DETAILS .. 107
APPENDIX B: EVALUATION DETAILS .. 111
APPENDIX C: HYPERBK - USER MANUAL.. 114
APPENDIX D: CONTENTS OF CD-ROM .. 135

viii

Table of Figures

FIGURE 1 IE7 DROPDOWN SIDEBAR WITH FAVOURITES AND HISTORY ... 17
FIGURE 2 OPERA ADDRESS BAR AND DROP DOWN TOOLBAR ... 19
FIGURE 3 HYPERBK OVERALL STRUCTURE .. 23
FIGURE 4 SEQUENCE OF EVENTS FROM LINK CLICK TILL WHEN WEBPAGE IS DISPLAYED 26
FIGURE 5 WEB PAGE CONTENT USED ... 27
FIGURE 6 KEYWORDS AND THEIR RESPECTIVE CATEGORIES... 28
FIGURE 7 ADD BOOKMARK SEQUENCE .. 30
FIGURE 8 RELATION BETWEEN BOOKMARKS AND HISTORY CATEGORIES.. 36
FIGURE 9 WEBPAGES AND THEIR SE REFERRER .. 37
FIGURE 10 THE COMPONENTS THAT MAKE UP THE MOZILLA PLATFORM.. 41
FIGURE 11 XUL CODE AND THE EQUIVALENT STRUCTURE .. 42
FIGURE 12 RDF NODE GRAPH... 43
FIGURE 13 SAMPLE RDF DOCUMENT .. 44
FIGURE 14 SAMPLE XUL CODE WITH TEMPLATE TAGS (TO QUERY RDF)... 45
FIGURE 15 SERVICE REQUESTER, SOAP AND WEB SERVICE.. 47
FIGURE 16 FIREFOX & HYPERBK LOAD SEQUENCE .. 50
FIGURE 17 LOAD EVENTS AND THEIR FIRE ORDER ... 50
FIGURE 18 WEBPAGE PARSING.. 52
FIGURE 19 HYPERBK WEBPAGE CLASSIFICATION ALGORITHM.. 54
FIGURE 20 BOOKMARKS DATA SOURCE NODES .. 56
FIGURE 21 HISTORY DATASOURCE NODES ... 57
FIGURE 22 ADD BOOKMARK DIALOG.. 58
FIGURE 23 CREATE NEW BOOKMARK CATEGORY DIALOG ... 59
FIGURE 24 BOOKMARK MANAGER.. 60
FIGURE 25 BOOKMARK VERIFICATION UTILITY .. 61
FIGURE 26 BOOKMARK MANAGER WITH WEBPAGE THUMBNAIL ... 62
FIGURE 27 LIMIT WIZARD (CREATE NEW CATEGORY) .. 64
FIGURE 28 LIMIT WIZARD (DIVIDE CATEGORY) ... 65
FIGURE 29 HISTORY VIEWER ... 67
FIGURE 30 SE REFERRER FINDING ... 70
FIGURE 31 SEE ALSO (USING SE REFERRER)... 71
FIGURE 32 SEE ALSO (USING AUTOMATIC KEYWORDS) .. 71
FIGURE 33 TOOLTIP OVER BOOKMARKED LINK... 72
FIGURE 34 TOOLTIP OVER LINK WITH SAME PATH AS BOOKMARK AND LINK TITLE SHOWN UNDERNEATH........... 72

ix

FIGURE 35 HYPERBK PREFERENCE WINDOWS... 74
FIGURE 36 CATEGORISATION EVALUATION HITS ... 84
FIGURE 37 NUMBER OF CATEGORIES AGAINST PRECISION OBTAINED ... 85
FIGURE 38 EXAMPLE ADD BOOKMARK DIALOG WITH TABS... 88
FIGURE 39 BOOKMARK CATEGORY TREE WITH ARROWS ... 89
FIGURE 40 SUGGESTED SEE ALSO METHOD (ADAPTED FROM [29]) .. 96
FIGURE 41 HISTORY WITH BOOKMARKED PAGES & THEIR RELATIONS .. 98
FIGURE 42 BOOKMARK FILE SUBMISSION PAGE.. 111
FIGURE 43 SEE ALSO EVALUATION LOGIN PAGE .. 112
FIGURE 44 SEE ALSO EVALUATION .. 112
FIGURE 45 INSTALL CAPTION DIALOG .. 114
FIGURE 46 WELCOME WIZARD PAGE 1 ... 115
FIGURE 47 WELCOME WIZARD PAGE 2 ... 115
FIGURE 48 WELCOME WIZARD PAGE 3 ... 116
FIGURE 49 TOUR ALL BOOKMARKS PROMPT .. 117
FIGURE 50 STOP TOUR WINDOW ... 117
FIGURE 51 ADD BOOKMARK DIALOG.. 118
FIGURE 52 NEW BOOKMARK FOLDER DIALOG... 119
FIGURE 53 HYPERBK BOOKMARK MENU... 120
FIGURE 54 HYPERBK BROWSER SIDEBAR .. 121
FIGURE 55 HYPERBK BROWSER TOOLBAR ... 122
FIGURE 56 HYPERBK BOOKMARK MANAGER WINDOW .. 122
FIGURE 57 HYPERBK BOOKMARK MANAGER (WITH PAGE THUMBNAILS) WINDOW.. 124
FIGURE 58 HYPERBK BOOKMARK VERIFY UTILITY WINDOW .. 125
FIGURE 59 DIVIDE CATEGORY WIZARD PAGE 1 .. 126
FIGURE 60 DIVIDE CATEGORY WIZARD PAGE 2 .. 126
FIGURE 61 DIVIDE CATEGORY WIZARD PAGE 3 .. 127
FIGURE 62 DIVIDE CATEGORY WIZARD PAGE 4 .. 128
FIGURE 63 HYPERBK HISTORY WINDOW .. 129
FIGURE 64 HYPERBK PREFERENCES PAGE 1... 130
FIGURE 65 HYPERBK PREFERENCES PAGE 2... 131
FIGURE 66 HYPERBK PREFERENCES PAGE 3... 132
FIGURE 67 NO SE REFERRER PROMPT... 133
FIGURE 68 SEE ALSO WINDOW (TOP KEYWORDS) .. 133
FIGURE 69 SEE ALSO WINDOW (SE REFERRERS) .. 134

x

Table of Tables

TABLE 1 BOOKMARK ATTRIBUTES .. 32
TABLE 2 BOOKMARK CATEGORY ATTRIBUTES ... 33
TABLE 3 HISTORY NODES ATTRIBUTES.. 33
TABLE 4 HYPERBK USER PREFERENCES .. 73
TABLE 5 LIST OF TESTS PERFORMED .. 76
TABLE 6 CLASSIFICATION EVALUATION RESULTS .. 83
TABLE 7 'SEE ALSO' EVALUATION RESULTS .. 86

 - 1 -

Chapter 1: Introduction

The use of the World Wide Web has increased tremendously in the last ten years as

has the number of member web pages. Users visit this vast space through their web

browsers. These web browsers need to cater for the user’s browsing patterns and to

help them find the correct page or document s/he requires. Two features exist in web

browsers for such a use: the bookmarks and history. All browsers since the very first

supported such features but unfortunately the features offered are limited and have

not developed much. This thesis will produce a Mozilla Firefox Extension which will

try and solve some of these problems.

1.1 Motivation
On inspection of the popular browsers i.e. Mozilla Firefox and Internet Explorer one

notices that the support for bookmarks and history is quite low. In fact there are

various third party programs that offer additional functionality to these browsers. The

idea for this project is to integrate the two together, and have the bookmark

managing utilities as part of the browser itself. This proves to be a better solution to

the user as all utilities are part of one suite.

A problem which many users find is that as their bookmark file grows they find it

harder to locate bookmarks inside of it (see section 2.3). This problem can be

extended to the sites visited in the near past: the history list. Many sites the user

visits would be related to some particular topic of interest to the user. As a topic is of

interest to the user then this means that in many cases the user will have a matching

bookmark category. Using this same reasoning many of the pages that the user visits

can be allocated to a bookmark category. Obviously this cannot be done as the

bookmark file would become enormous with lots of useless entries. But what about

the history? In fact the history can be given this view, where entries would be

grouped by topic instead of date/time visited or site URL.

 - 2 -

As it is described in section 2.3.2, this representation matches more the user’s

mental representation, and thus previously visited URLs can be located much easier.

1.2 Aims of the project
The following are some of the aims that have to be offered in order to meet the goals

and project success.

 Providing a simple way of classifying a web document into a bookmark

category:

This idea is to have the appropriate bookmark category highlighted

instead of adopting the approach browsers use i.e. highlighting the last

category one bookmarked into (see section 3.3.1).

 Maintaining a healthy bookmark file in an organized fashion:

A bookmark file increases with time, and in many cases due to the

nature of the WWW itself, bookmarked pages go offline and are lost but

their link still remains in the bookmark file. Together with this a

bookmark category can grow that the user might require dividing it into

smaller categories (see section 5.7.1 and 5.7.5).

 Easier way of locating pages in history:

Finding a page from within the history list is quite problematic due to the

nature of how the history is stored. For this reason the history will be

given a new view where it will be split up by topic, where these topics

will be the bookmark categories (see section 3.4.11).

 Better representation of bookmarks

The page title and URL are not always indicative of which page the

bookmark represents. For this reason a thumbnail will be stored with

each bookmark (see section 5.7.2).

 Portable solution

The features will be portable from one platform to another at least on

the following platforms: Windows, Linux and MacOS (see section 4.2).

 - 3 -

 Tightly coupled with browser

All features must be accessible from within the browser itself, with no

external utilities so as to have everything accessible from one suite (see

section 4.2).

 See Also Recommendations

These recommendations will consist of webpages similar to those found

inside of a particular bookmark category. The query will be

automatically computed and sent to a search engine to retrieve the

results (see section 3.4.12).

1.3 Thesis Overview
This section gives a brief overview of HyperBK and its main components. HyperBK is

a Mozilla Firefox Extension which can be used to replace all the bookmark and

history management found inside of the Firefox browser.

The main task of HyperBK is that of automatically classifying a webpage to one

bookmark category once it is loaded into the browser. This is also the new

organization that is given to the visited web pages history list.

Other tasks that HyperBK performs include: suggesting the bookmark category a

bookmark should fit in, maintaining a bookmark category in case there are too many

bookmarks, and verification of bookmarks (i.e. checking that the web page still

exists). Some features to allow the user to traverse better the bookmark list include:

searching the bookmark file with keywords from the contents of the page, rather than

just the page title, and a page thumbnail for each bookmark. In case that a bookmark

is offline HyperBK will also load the webpage from a local cache on disk.

With respect to the new history the user will be capable of applying some filters to

reduce the number of visible pages. These would include: filtering by date/time,

keyword, and period visited.

 - 4 -

The final set of features involves using search engines. The first option includes a

See Also option with each bookmark category, which fetches a list of similar pages

by automatically generating a query from past queries or from the automatically

collected terms. The second option is that of rediscovery of a bookmarked web page

in case this turns out to be offline, whereby the user can issue this command to try to

relocate the bookmarked page.

1.4 Organization of Document
Chapter 2 gives a brief history of WWW browsers. Following this there is a literature

review on users’ browsing patters and bookmark management systems. Tools that

are used to process text, like Porter’s stemming algorithm and document

classification, are also described. In the last section current browsers are compared

against each other on the features they offer regarding bookmarks and history.

Chapter 3 introduces HyperBK and describes the features that are offered together

with its overall structure and sequence of how the events take place.

Chapter 4 deals specifically with the Mozilla platform and its main components

namely XPCOM and the Chrome. Following this there is a description of the

technologies used in this project: XUL, JavaScript, RDF and Web Services.

Chapter 5 deals with the implementation aspects of HyperBK. It also includes

screenshots for each and every component implemented.

Chapter 6 is divided into two main parts: testing and evaluation. The testing ensured

that HyperBK was functioning according to the tests performed. On the other hand

the evaluation is divided into two sub parts. One deals with the web page

classification algorithm while the second deals with the ‘See Also’ recommendations.

Chapter 7 is the concluding chapter of this thesis. It presents the results obtained and

gives a list of future work that can be done to extend HyperBK to future versions.

 - 5 -

Finally there are four appendixes which are attached to this document:

 Appendix A deals with some development details such as the URI of the RDF

data sources and the list of common words that are excluded from the web

pages during parsing.

 Appendix B explains how the web interface for the evaluation was and how the

evaluation results were collected.

 Appendix C is the User manual to HyperBK which lists all the features and

describes how to use them.

 Appendix D lists the contents of the CD-ROM.

 - 6 -

Chapter 2: Background and Survey

2.1 Introduction
This chapter is divided into the following parts: the first section gives a brief history on

WWW browsers. Following this there is a literature review on bookmarks, history and

browsing patterns of users. The third section gives a brief overview of the Porter

Stemming Algorithm and Document Classification. The final section describes how

current browsers handle bookmarks and history.

2.2 A Short WWW Browser History
The history of browsers as we know it today can be traced back to November 1993,

when Mosaic the first graphical web browser for X-Windows was released. Mosaic

was developed at the National Center for Super Computer Applications (NCSA)

following Tim Berners-Lee’s work on hypertext and the http protocol. In fact Mosaic

was tested on Tim Berners-Lee’s web server. This browser being graphical

introduced the support for sound, video and simple forms [1]. It also had support for

user bookmarks and history of previously visited web pages. Mosaic was the tool

which helped to spread the use of the WWW. A year after Mosaic’s release Netscape

Communication Corporation released Netscape Navigator. This browser was built on

top of Mosaic and was distributed freely among students, teachers and researchers

all over the world. Netscape 2 then supported frames and JavaScript while the third

version introduced the mouseover features [1].

Till 1994 Microsoft had not taken the Internet very seriously but after realizing its

potential they too required a browser for their operating system. Microsoft bought

rights from Spyglass Inc which held the rights of the Mosaic browser, and so

Microsoft released Internet Explorer [2]. IE3 was quite a decent browser as it was the

first to support Cascading Style Sheets (CSS). In fact Internet Explorer dominated the

 - 7 -

whole browser share since then as it was freely distributed with Microsoft Windows

making it quite useless for a user to obtain Netscape [2].

On January 1998 Netscape announced that its browser will be distributed freely

including its source code. This was the birth of the Mozilla project which was

established as a non profit organization to preserve choice and innovation over the

internet.

Internet Explorer dominated the browser market till around 2003 when Mozilla started

slowly to eat its share. On the 9th November 2004 the Mozilla Foundation officially

released the Firefox 1.0 browser. This browser is licensed under the open source

Mozilla Public License and is available at no cost. At that time it offered much more

functionality than its rival Internet Explorer including tabbed browsing and Rich Site

Summary (RSS) integration [3].

2.3 Literature Review
The World Wide Web (WWW) has grown to vast sizes in the past 10 years. In fact

this space is on the exponential increase reaching 70 million web servers in August

2005 [4]. This is one of the reasons why users browsing pages are finding it hard to

be able to keep track of the pages they visit. For this reason users need a variety of

tools to assist them in their daily browsing experience. In fact the two most popular

features that exist to help the user to be able to keep track of the vast space of the

WWW are the Bookmarks (or favourites in Microsoft Internet Explorer) (Over 92% of

users have a Bookmark archive [5]) together with the browser’s History, as all

browsers adopt such features with only minor differences.

Bookmarks are links to web pages stored in a hierarchal tree, whereby each category

of links is normally grouped into a folder. The user can use the bookmarks to revisit a

page simply by clicking on the link. In this way the user will have his personalised

local URL repository. The problem is that as described in [6] users don’t find much

help in these features. Some of these problems are due to the nature of the WWW

 - 8 -

itself. Pages move and are constantly being deleted and updated. Although these

changes happen all the time the user is not notified when such an event happens. In

fact for a user to notice that a page has changed s/he has to visit the bookmark

manually from time to time.

Other problems are due to the way the bookmark list is stored and structured. Each

bookmark name is normally the page title, and in many cases this is not descriptive

enough to remind the user what that page is about. Although the bookmark name is

editable and the user can change it to his taste this does not mean that all users do

so. Another problem arises when the user does not maintain and organise the

bookmark file. The bookmark file grows linearly in time and over 93% of users create

0 to 5 bookmarks each browsing session [7] (This study might be misleading as it

was carried out in 1997, and the user browsing skills may have changed significantly

since then). Thus if not managed well the bookmark file will grow and become large

in an unorganised way which will make it hard for the user to remember where each

bookmark is located.

2.3.1 Why and what is Bookmarked

All users at some point in time use bookmarks as this feature is quite popular and

easy to use. When a user decides to bookmark a page, then the page falls under one

of these sections [5]:

 General usefulness

 Quality

 Personal interest

 Frequency of use

 Potential future use

All of them point to the fact that at some time the user wishes to revisit the page and

in many cases s/he would like to be notified if the content of that page changes.

Normally bookmarks lead to sites with specific content. For example, according to the

study performed in [5] really few users bookmark specific news events but rather

 - 9 -

bookmark the top root node of the news site. Similarly for search engines, few users

bookmark search results, but bookmark the search engine instead.

Bookmarks are basically used for the following reasons as described in [5]:

 Reduce the cognitive and physical load of managing URL addresses

 Facilitate the return to groups of related pages

 Enable users to create a personal information space for themselves and

others

Bookmarks are used in only 2.7% of all navigation actions [7] but still are quite

important. They help the user remember URLs from previous browsing sessions,

facilitating the return to such pages.

The problem arises when a user visits a page which s/he does not bookmark. This

page can be accessed in the future by visiting the browser history. But the way the

history is organised is not an easy way to find the page, especially if the user forgot

the exact time when s/he was looking at it. As described in [5] users end up

bookmarking pages to enable access to previous browsing sessions which leads to a

larger bookmark file with no use. This would not be necessary if the history were

organised and the user could view it in a more friendly way.

2.3.2 Page Revisits

Tauscher and Greenberg [8] found out that 58% of web pages a person views are

pages that have already been viewed in other sessions. This means that browsers

need to cater for such a high revisit percentage. Bookmarks are just one way of

revisiting a page, there is the Back button (30% of all navigation methods) [8] and

also the History.

The History is a list of visited URLs together with their respective page title, date and

time of the last visit. The main problem with such a list is that a person needs to scan

the whole list to find a desired page [9] but this is not the only problem. People have

trouble recognizing the page as the title and URL are not representative enough [9].

 - 10 -

In fact as described in [8] the Back/Forward buttons are heavily used as these go to

the previously visited pages in the same session but on the other hand as history

refers to all sessions it is much more complicated. This problem is shared by

bookmarks too but in my opinion history suffers more due to the fact that in

bookmarks the user would have specifically bookmarked a page while in history the

page gets added automatically.

In [9] Kaasten and Greenberg adopt quite an interesting method. They integrate the

history and bookmark together by creating implicit bookmarks by the number of visits

a page has. Such pages have a vertical bar on the side which indicates the number

of visits and the user can easily click on a page to automatically bookmark it. They

also offer search features so that users can rapidly filter and search through the

history. Such filters are by visit count, keyword in title and domain. In fact there is a

lot of similarity between the bookmarks and the history due to the re-visitation patters

that occur as there is a 58% probability that the next visited page has already been

seen [8]. This actually means that there is a huge similarity between the bookmarks

which represent the topics the user normally visits and the history which is the total of

all pages visited.

Although filters help the user to navigate through the history it is still a problem to find

the required item immediately. This is due to the fact that the history is organised by

time or alphabetically and this does not match the user’s mental model [10]. In fact a

more sensible way would be to organise it by project or topic. In [10] two methods for

organizing web history were tried out. In the first method a web page importance

measure was given to each page. This measure was calculated by the amount of

keystrokes, mouse activity, similarity of web pages with URL and same session

pages were regarded to be similar. Hierarchical clustering is then used to cluster the

similar pages using their similarity ratings. In the second method a modified

“Hebbian” learning rule was used to adjust the similarity of pages.

In my opinion one cannot say that pages in the same session are similar, particularly

nowadays with the advance of tabbed browsing. Many users could in fact be

 - 11 -

browsing on more than one topic at the same time. In fact the tabbed browsing

features increases the complexity required to monitor the user’s movements through

hyperspace. A new page can be opened in the same tab, a new tab or even a new

window. This also increases the number of open pages as a window can hold many

tabs.

As the history is quite vast it is daunting to try a manual organization [11]. Picking a

page from history at random in many cases might not be indicative of what the page

was visited for [11]. This becomes truer as the entry in the history of a particular page

gets older. This proves the fact that an automatic method of classifying is required for

the history which would automatically place the document in the most matching

category.

2.3.3 Bookmark Management Systems

A number of bookmark management systems are present nowadays although none

of them are integrated with a WWW browser in any way. In fact they all exist as third

party tools, which is probably why such managers are not so popular. These

managers range from online websites [12] [13] which enable a user to store his

bookmarks, to machine local programs [14] [15] [16] which import browser

bookmarks and manage/process them.

An example of a machine local program is HiBO [14] which can automatically

organise bookmarks. HiBO works by downloading the URL and parsing the html

document. It then extracts the thematic words using a lexical chaining technique

which is used in page summarisation. These thematic words are mapped to a

hierarchy of categories. This system has a fixed hierarchy structure into which each

page should fit. This is quite a disadvantage with regard to other systems as the user

cannot create a personal hierarchy. After the hierarchy has been built HiBO offers the

following functionality:

 Searching by topic, site/domain or keyword

 Organising Bookmarks in a hierarchal format

 Sorting the bookmarks in the hierarchy’s topics

 - 12 -

Another variety of systems are online web applications where the user has to log into

such websites and is presented with his links [12] [13]. These sites are particularly

useful as they enable two features which local bookmark managers cannot offer. One

is that the bookmarks are available throughout the globe and the other is that

bookmarks can be shared (if the user wants). Other features include automatic

detection of duplicate bookmarks where the user is notified if s/he adds a bookmark

to a page already bookmarked. [13] offers a tour through a bookmarked category by

presenting the user with the first bookmarked site and then switching to the

next/previous by clicking on a ‘Next/Prev’ buttons. Yet such systems do not offer

features such as automatic organization of the bookmarks into categories. All the

categorization has to be done manually by the user. Also these systems do not mark

any dead bookmarks.

Check&Get [15] is an Internet Organiser and Web-Monitoring system. This tool

organises the bookmark list and monitors each page for modifications. Highlighting

the content that has changed on the page is quite useful for the user who wants to

quickly see what has been updated since the previous time s/he has visited the page.

In fact this is quite useful for web pages that have their content change on a daily

basis. This system also offers to cache the pages locally for offline reference.

Another system that is available to store WWW links is BookMap [16]. This system

instead of giving the simple plain look to the bookmark lists presents it in a graphical

manner like a graph called BookMap. This gives the user a better view of his

collection of bookmarks so that s/he is able to spot the one s/he wants immediately.

In addition, instead of using the normal way of displaying a link (i.e. the page title) this

system takes a snapshot of the page and displays this as a small icon.

2.3.4 Features required in a Bookmark Management System

After the above survey a number of important features can be pointed out about the

features required in a bookmark management system. In fact Abrams, Baecker and

Chignell [5] list the following necessary features:

 - 13 -

 Organization

The effort that the user requires to organise the bookmarks should be the

minimum possible. This can be done either by providing an automatic “filing

mechanism” or else by having “automated sorting capabilities”. This ensures

that the bookmark list is always organised and thus when a bookmark is

required it is found easily and efficiently.

 Visualization

As time passes by the bookmarks increase and thus in many cases there

are too many bookmarks in one category to be able to show them to the user

in one screen. This is quite a problem as the user would like to spot the

bookmark s/he requires immediately instead of having to scroll and search for

it. The ideal solution is to have a representation whereby all the bookmarks in

one category are visible to the user inside one window without the need of

scrolling to view them all.

 Representation

In many cases the title and URL of the bookmark are not sufficient to

remind the user why that page was bookmarked. In fact this is why BookMap

[16] uses the title together with a dump (small screenshot) of the page to label

it. The chance of the user remembering the layout of the page is greater than

the page title itself. Another technique that can be used is to add to the

representation of the bookmark terms that occur inside the document. This

can enable searching of bookmarks by keyword search.

 Integration

The user will be using the browser to browse the WWW. Many bookmark

management systems are external programs to the browser. In fact this in

many cases might lead to duplicate or non-synchronised bookmark lists.

Together with this the user is required to open a different program from his

browser to be able to access the web sites s/he wants. Ideally there is closer

integration between a bookmark management system and the WWW browser.

Each of the features described above have underlying tasks which are much more

complex problems. First of all to be able to automatically insert the web page into the

 - 14 -

correct category in the bookmark list then the document would have to be examined

by some document classification algorithm. This would have to match the document

with the correct category. There are many different methods of document

categorisation. Li and Yamanishi [17] come up with document classification based on

a finite mixture model. This is a powerful method but has two big disadvantages,

making it unsuitable for classifying web pages into the bookmark categories. First of

all it assumes that the categories are defined at start with all the keywords in the

categories. Secondly there is no way to tell if a category exists for a particular

document, as the algorithm would assign the document to the category with the

highest ranking. This is not good in the bookmark scenario where in many cases the

user would start off with a blank bookmark file (no categories) and then increase

categories as the times goes by.

Another document classification method is described in [18]. This method is based on

the fact that a summary of the page would be enough to classify a page, and even

further by extracting the popular terms inside the page one would be able to classify

the page into the required category. In this paper the technique used is an adaptation

of Luhn’s summarization where in this technique the popular terms of the page would

be extracted (removing stop words and some web page jargon). As shown in [18] this

technique produces good results.

2.4 Porter Stemming Algorithm
Porter Stemming Algorithm is used to remove automatically suffixes from a word to

reduce it to its basic form. This is particularly used in Information Retrieval (IR)

systems whereby lots of different words can be reduced, and thus compared with

each other. This algorithm removes suffixes like ‘ed’, ‘ing’, ‘ion’, ‘ions’ etc. This means

that words such as CONNECT, CONNECTED, CONNECTING, CONNECTION,

CONNECTIONS will all be reduced to CONNECT. This method makes searching

through an IR system much easier as if the user specifies the word connected,

internally the IR system can look for all the other words which have a similar stem

[19].

 - 15 -

This algorithm was developed in 1979 in the Computer laboratory, Cambridge

England by M. F. Porter as part of a large IR project and was then published in the

1980 as an algorithm for suffix stripping. The original stemming algorithm was written

in BCPL a common language at that time.

2.5 Document Classification
Document Classification is a method in which similar documents are grouped

together into one group. The classification can be done in two ways: either

supervised or unsupervised. In the former human feedback would normally be given

if a document is classified correctly or not. On the other hand in unsupervised, the

classification will be done without any form of feedback being totally independent.

There are two main methods of classification: clustering and categorization. By

clustering some group structure is found for a set of documents while in

categorization documents are assigned to a structure known in advance.

Document Classification systems work in three phases being:

• Document representation

• Classifier construction

• Classifier evaluation

In document representation the document is represented as a series of term and the

term frequency. These terms can be reduced to remove irrelevant and redundant

ones a process known as dimensionality reduction [20].

The best individual features (BIF) method evaluates all words individually according to a given
criterion, sorts them and selects the best subset of words. Since the vocabulary usually
contains several thousand or tens of thousands of words, BIF methods are popular in TC {text
classification}. However, such methods evaluate each word separately, and completely ignore
the existence of other words and the manner in which the words work together. [20]

Once the document can be represented in some form this will be compared with each

category or group of documents. A score will be given to each category/group. The

 - 16 -

final step will be evaluating the scores to find the most appropriate category/group for

the document.

A problem that is encountered at this point is that of efficiency. Salton [21] has

emphasised this and explains a better method where a ‘representative document

group vector’ would be selected out of each group and this will be matched with the

document being classified.

One of the simplest methods of assigning a document to a cluster is to see the

intersection of the terms with that cluster. This method in many cases would not

consider the number of terms that are present in each group, or the non-presence of

some [22].

The term frequency is the mostly used feature to determine the nature of the

document. There are various techniques how documents can be classified, like:

• Naïve Bayes classifier

• Latent semantic indexing

Naïve Bayes classifier

A simple probabilistic classifier is the naïve Bayes classifier which is based on

probability models. Naïve Bayes classifier can be derived from Bayes’ theorem and

uses the maximum likelihood method. Although this method uses a very simple

design it works much better in many complex real-world situations than one would

expect [23].

Latent semantic indexing (LSI)

LSI is a technique invented in the 1990 which is used to make the document easier to

classify and search. This technique solves two fundamental problems: when writers

use different terms to refer to the same topic and words which have multiple

meanings. LSI uses a document term matrix where the rows correspond to

documents and columns correspond to terms. More explanation on this method can

be seen in [24].

 - 17 -

2.6 How Current Browsers Present Bookmarks and History
This section gives a brief overview on the features that most popular browsers have

with respect to bookmarks and history. The browsers examined are:

 Microsoft Internet Explorer v7

 Opera

 Maxthon

 Mozilla Firefox

 Konqueror

2.6.1 Microsoft Internet Explorer 7 (Beta 2)

Figure 1 IE7 Dropdown sidebar with Favourites and History

This is the latest version of the most popular browser from Microsoft. It has many

new features including new ways of handling/displaying favourites (bookmarks) and

also supports tabbed browsing by default. As Internet Explorer has no main menu bar

the Favourites are displayed in a sidebar (Figure 1) which drops down from the top.

In fact this is a tree with the categories and all the favourites that are present. Beside

this button there is also a button which pops out a menu to add, import/export or

organize the Favourites.

 - 18 -

The organize favourites dialog is very simple as there are only four options available

through which a user can maintain organized favourites. These are:

• Create New Folder

• Rename

• Move

• Delete

The add to favourites dialog is simple too, in fact it only contains a drop down list with

the categories a favourite can fit in; the favourite name and a button to create a new

category. The selected category is the one where a favourite was last saved into.

The history is accessible through the same sidebar that contains the favourites. It can

be viewed according to the following four parameters:

• By Date

• By Site

• By Most Visited

• By Order Visited Today

Apart from the above Microsoft Internet Explorer does not offer any more functionality

regarding bookmarks and history. But one can say that it offers the bare minimum

that is required to maintain an organized favourites list, although effort must come

from the user to sort it and maintain it.

2.6.2 Opera (v8.5)

Opera is a descendant from the Netscape suite of browsers, and although being a

really good browser it is not much used due to the fact that it was available at a cost.

Opera has the Bookmarks menu in the main menu bar. This bookmark menu

contains an Add Bookmark Option, and Manage Bookmarks at the top of the root

menu. In other submenu there is a ‘Bookmark Page’ and ‘Open all Folder Items’

command.

 - 19 -

The add bookmark dialog in this case has more options as one can edit the

bookmark name, give a nickname to a page, modify the URL and a drop down list to

select the category that the bookmark will be placed into. The category shown is the

last category a bookmark was placed into. In fact in Opera has the most laborious

bookmarking process.

An interesting feature (Figure 2) in Opera is that when the address bar is clicked a

drop down toolbar drops down from beneath it which contains a menu with the top

bookmarks, and a menu with the bookmarks just like the one in the main menu. On

the other hand Opera has no sidebar which contains bookmarks or history. The

history can be viewed as a separate tab. There is no way how one can filter out or

sort the results. The only option that exists is a keyword search which would match

with URL or page title.

Figure 2 Opera Address Bar and drop down toolbar

The bookmark manager which opens up in a new page has only add and delete

options. Moving of bookmarks from one category to the other has to be done by

dragging the bookmark from its parent to the new. There are a number of sort

methods that can be used on the bookmark list which include:

• Sort by name

• Sort by nick

• Sort by address

• Sort by description

• Sort by created

• Sort by visited

 - 20 -

2.6.3 Maxthon Web Browser (v1.5)

The Maxthon web browser is a variant of Internet Explorer. It has some additional

features such as tabbed browsing which made it popular since Internet Explorer 6

had no such features.

The sidebar features and menu features resemble Internet Explorer 6 but in addition

it has an “Add URL Here” to bookmark a page inside a particular category. The

interesting feature of Maxthon is the add bookmark dialog. In fact this is a simple

dialog but shows the name of the bookmark which is editable and a tree of bookmark

categories instead of the standard drop down box. In my opinion this is a better

approach then using a drop down list as the user will get a visual of many categories

at one go.

2.6.4 Mozilla Firefox (v1.5)

Firefox retains the standard ways of handling bookmarks. In fact it has a bookmark

menu on the main menu bar, and also has a bookmark sidebar which contains all the

bookmarks. An interesting feature of this sidebar is that it contains a search bar at the

top to locate any bookmark. The history sidebar is a different sidebar from the

bookmarks one. This also contains a search bar at the top and in addition to this it

contains a drop down list with the way to format the history views, which include:

• By Date and Site

• By Site

• By Date

• By Most Visited

• By Last Visited

Firefox Add Bookmark Dialog is quite simple. In fact it shows the Bookmark name

which can be modified together with a drop down box of the category to fit in the

bookmark. But in addition to this there is a button which when clicked will increase

the dialog and show the whole tree.

 - 21 -

2.6.5 Konqueror

Konqueror uses a much simpler approach than other browsers. In fact when the user

presses the Ctrl-B key sequence the current loaded page is bookmark to the

bookmark root. To add a bookmark to a particular category the user would have to

navigate through the menu and find the desired category and click on Add Bookmark.

This is in fact a cumbersome way of adding a bookmark as it may result in having lots

of bookmarks stored in the bookmark’s root.

Konqueror also has a sidebar which contains the bookmark and history in the same

sidebar. It also has features to search the current view. The bookmark manager

offers the basic functionality like other browsers.

2.6.6 Best Browser Features

As a conclusion one can easily point out the best features out of these browsers.

First of all the bookmark menu is probably the best way of displaying the list of

bookmarks and the categories that each bookmark resides in. It has become a

standard feature and the menu/submenus divide the bookmarks into categories

perfectly. The add bookmark dialog is fundamental too, unlike Konqueror which just

adds a bookmark to the root category. In my opinion the best style for the add dialog

would be to show the whole category tree instead of a drop down list. This reduces

the number of clicks that a user requires to select a category and in addition by

viewing the whole tree the user might be pointed to identify a more suitable category.

The other two features that are useful are the sidebar and some bookmark managing

tool. A sidebar with integrated bookmarks and history can make it easier for the user

to take a look at the bookmarks or history while browsing. The bookmark managing

tool should be simple and have all the necessary features to modify the bookmarks

and move them from one category to the other.

2.7 Summary
This chapter described the problems and habits of users that are exhibited over the

WWW. It also gave a description of how the browsers are designed in order to help

 - 22 -

such interaction. In fact one can say that browsers do not help that much when it

comes to bookmarks and history. As described the bookmark file becomes

unmanageable with time and the history is not used by most users. This thesis will try

to give solutions to some of these problems.

 - 23 -

Chapter 3: HyperBK Specification and Design

3.1 Introduction
In this chapter the structure of HyperBK which is a Mozilla Firefox Extension is

described together with the functionality that it offers. HyperBK replaces the

bookmark functionality in the Firefox browser. Instead of adding the functionality to

the existing bookmark features already present inside the browser, HyperBK replaces

them. This is due to the fact that additional data needs to be stored with each

bookmark. Although the Firefox browser is open source and this functionality can be

easily entered into the browser’s code this would not result in a pure extension but

merely a new build of Firefox. Thus using the extension approach HyperBK can be

easily deployed with a click from within a web page.

The diagram below (Figure 3) shows the basic functionality that HyperBK offers. The

web page classification algorithm classifies the currently loaded page in the correct

bookmark category and stores this in the history. When the user requests to

bookmark a particular page the resultant category can be forecasted using this same

method. Apart from this HyperBK offers better bookmark management. This includes

holding a copy of the bookmarked page on disk and a thumbnail of the bookmarked

page for easer recognition.

Mozilla - FirefoxMozilla - Firefox
Bookmark cache

Bookmark ‘page
Thumbnail’ cache

Web Page
Classification

Extension

Add Bookmark

History File (RDF)

Bookmarks File (RDF)

Figure 3 HyperBK Overall Structure

 - 24 -

To be able to provide the required functionality (Figure 3), commands that are

present in Firefox (such as Ctrl-D) which would add the currently loaded page as a

bookmark instead need to point to HyperBK’s functionality. Together with this the

bookmark menu and bookmark sidebar would have to be replaced by new UI

components. In addition to this some new windows are introduced which offer

functionality for bookmark and history management.

The main components are:

• Web Page Classification to Bookmark Category

This algorithm is the core of HyperBK. It takes a web page on load and detects

the matching bookmark category.

• Bookmark menu

This menu replaces the bookmark menu already present in Firefox. It consists

of all bookmark categories and all bookmarks inside of them. Each category is

divided into a submenu just like the normal bookmark menus in the browser.

With functionality to add bookmark to that category, tour bookmarks in

category and See Also link for category.

• Add Bookmark Dialog

This allows the user to add the bookmark to a particular category. The

category will be selected according to the webpage classification algorithm.

The user is still capable of changing this pre-selected category.

• See Also

Using this functionality the user is provided with a list of similar sites retrieved

from a third party search engine.

• Browser Sidebar

This displays the bookmarks and history so the user can have a visual of them

at all times. It also offers search functionality through the bookmarks/history by

the name, title and page keywords.

• Bookmark Manager

This allows movement of bookmarks, deletion, renaming and simple browsing

of the bookmarks. A thumbnail of the bookmark provides better recognition of

the page that the bookmark points to.

 - 25 -

• Bookmark Verification Utility

This sends an http HEAD request to the web server hosting the web page to

check that the bookmark is still active.

• History Viewer

This viewer displays the pages inside the history as categories similar to the

bookmark categories.

3.2 Design Considerations
When designing HyperBK there are a number of attributes that need to be

considered which are considered to be very important and necessary for the success

of HyperBK. The following are a number of objectives that have to be followed in

order to achieve full user satisfaction:

Autonomy: HyperBK needs to be independent and not require user intervention for

every page visit. In fact user intervention should never be requested and if an

operation is required, the user should be responsible for taking the decision to do it

[25].

Configurability: HyperBK should support a number of parameters which the user can

modify so as to change the behaviour of HyperBK to cater for his/her needs [25].

Interaction: HyperBK should follow the normal Firefox UI layouts so as the user will

not be required to learn anything new. This includes commands, icons and windows

[25].

Privacy: HyperBK should keep all user information confidential, so this means that all

files and folders created need to reside in the user’s profile directory. When HyperBK

accesses the World Wide Web no divulgence of information has to be done [25].

Resources: HyperBK should consume the least resources possible. In fact the

process time to classify a page should be the minimum possible as not to annoy the

 - 26 -

user in his/her browsing experience. Processing cannot run in the background as it

has to be done while the user is browsing the web pages. In fact no processing can

be done when idle as being an extension the browser will be closed once the

browsing session is over.

Modification of Page Content: HyperBK should modify the page content but without

disrupting its visual layout. This approach is taken as not to disrupt the page styles

and colouring, thus tooltips will be preferred.

3.3 HyperBK Extension Overview
This section describes in some more detail the extension’s requirements and

structure, which includes the webpage parsing and classification, the interface, and

finally other features offered by HyperBK.

Link clicked/
entered

Web Page Loads Parsing

Classification

Update History

www. 1

2 3

4

5

Update tooltips
6

Display WebPage
7

Figure 4 Sequence of Events from link click till when webpage is displayed

3.3.1 Webpage Parsing and Classification

The core of HyperBK is the webpage classification (step 3 of Figure 4). This is based

on the term frequency of the textual contents of the webpage. Only webpages with

 - 27 -

html content are considered, so other documents (like pdf, ppt, doc etc) are not

classified as their structure does not form part of the browser DOM but these are

loaded through third party plugins.

3.3.1.1 Webpage Parsing

The first step (step 2 in Figure 4) once a page has loaded is to parse the webpage

whereby all the necessary textual content is extracted from the page. Each webpage

is loaded into the browser’s DOM thus this can be used instead of parsing the html

string. This is a much faster way of extracting the necessary information. The

extracted content consists of the following:

Page

META keywords

Head

Body

IMG alt text

#text nodes

Title

Figure 5 Web Page Content Used

This content (Figure 5) is passed on to the next step which is responsible for counting

the term frequency of each keyword.

Prior to counting the term frequency the textual content has to be filtered in a way as

to provide better counting, like removal of symbols and unnecessary characters. To

provide more precise counting, each word is stemmed using Porter’s Stemming

Algorithm (ref section 2.4) so as to group similar words by comparing the word’s stem

instead of the whole word.

 - 28 -

After the term frequency has been calculated then the most representative keywords

can be extracted and be used to represent the document. These terms are compared

with all bookmark categories to see the category the webpage is likely to fit in. (ref

section 5.3 for more detail on webpage parsing)

3.3.1.2 Webpage Classification

In webpage classification the keywords that represent the webpage are compared

with each category in sequence. The category is represented by a union of the

keywords of each and every bookmark present in that category as shown in Figure 6.

Each category is considered as an independent category consisting only of

bookmarks, irrespective of the other subcategories inside of it.

keywords

ke
yw

or
ds

Figure 6 Keywords and their respective categories

Each category is considered as independent due to the fact that ideally there would

be a clear distinction between each category. So classificationwise in the above

example Category 1 only contains Bookmark A and Bookmark B, and the union of

keywords of these two bookmarks will make up the bag of keywords that represent

Category 1. Similarly Category 2 is made up of Bookmark C and Bookmark D and the

union of keywords of these two bookmarks make up the bag of keywords for

Category 2.

Bookmark categories that fall under the bookmark root are considered to have no

association amongst themselves. Likewise this can be extended to subcategories,

 - 29 -

although in many cases there would be an association. As an example one can have

a category named ‘University’ and some subcategories could be: ‘Java’, ‘Agent

Technology’, ‘Hypertext’ etc, which would represent different credits a student

undertook. Although there is a relation between the categories, this relation does not

relate to webpage content but to other factors.

Thus when classifying a webpage the category that has the most matches with the

page keywords is the forecasted parent for that page, but this is not always the case.

Sometimes the user may construct a category whereby the sites inside of it will be

matching by their URL instead of their content. Although this is true one cannot

decide that URL has precedence over the page contents due to the nature of the

WWW and how documents are organized, where a server can host multiple websites

where each site will have the same domain. A balance between the page keywords

and the URL has to be done in order to distinguish such sites.

3.4 HyperBK Features
A bookmark manager needs to have high user friendly features in order to fulfil its

task. One has to note that most web browser users are non-technical people who do

not know anything about the nature of the WWW and how to browse and look for

information. This means that HyperBK’s functionality needs to be as simple as

possible in order to be used by anybody.

3.4.1 Bookmark Menu

All browsers have a bookmark menu whereby each category is displayed as a

submenu with the containing categories and bookmarks. If the webpage’s favicon is

available then this would be a good indicator with the bookmark name. The bookmark

name would be the page title but the user should be capable of modifying this name

to adjust it to his likes.

Within each category it would be useful to have a Bookmark Here link whereby the

user can automatically bookmark a URL to a specific category in the fastest way

 - 30 -

possible, bypassing the Add Bookmark Dialog. Another useful link is the Tour, which

would tour a particular category. This can be found useful if the user requires finding

a particular page from within a category but has no clue of which bookmark it is.

Links to such features would be best if they are available at the top of each submenu.

3.4.2 Add Bookmark Dialog

Figure 7 Add Bookmark Sequence

This dialog is shown when the user presses the CTRL-D or selects Add Bookmark

command from the menu. It should allow the user to modify the bookmark name and

select the destination category. The automatic classification algorithm should

highlight the mostly likely category that the bookmark should be stored into. But the

user should be capable of selecting a different category by clicking on any other. For

this reason it would be most appropriate if all the categories are listed under each

other (using a tree) instead of using the drop down box most browsers use. In many

cases the user will bookmark a page which should be placed in the last category that

they bookmarked into. Thus a button to provide such functionality can be useful for

some users. Figure 7 shows how the add bookmark events occur, from when the add

bookmark button is clicked till the actual storing to disk.

3.4.3 Bookmark Manager

A bookmark manager is used in many cases to organize the bookmarks and possibly

get a deeper look on each bookmark. From the survey done in section 2.6 by

inspection of the most popular WWW browsers that exist, one can conclude that a

bookmark manager should offer the following functionality:

• Create new category/folder. With this option the user can create a new

bookmark folder (category).

 - 31 -

• Move Bookmarks. The user can select a bookmark and move it to a different

category. As a bookmark category has fixed order inside of it then the user

must be capable of moving the bookmark up/down thus changing the order of

the contents of the category.

• Automatic sorting of the bookmarks inside a particular category or else

throughout the whole bookmark file would offer great simplicity and an easy

way to keep the bookmark file organized.

• A bookmark name can be renamed, but the URL should never be allowed to

be modified. The user can easily bookmark the new URL, instead of changing

the URL some particular bookmark.

• A bookmark can be deleted if the user decides to. No automatic deletion of

bookmarks should be allowed. This is due to the nature of the WWW and how

sites are sometimes offline and back online. Even if a bookmark has not been

visited for a very long time is not indicative that the bookmark can be deleted

as some bookmarks are stored and accessed after a long period. [5]

• To offer easier functionality the user should be allowed to apply a filter to the

bookmark list to find some particular bookmark in an easier way. The filters

should include keyword search, visit date and visit count

• A thumbnail of the respective page with the bookmark can offer better

recognition of the bookmark. Although as explained in [28] this thumbnail does

not offer proper recognition, it does help a lot.

3.4.4 Fast Bookmarks

Many times a user will start a browsing session on some particular topic or short term

interest. Such visited pages do not fall as pages that are to be bookmarked but in

many cases the user might still need to refer to them in the next immediate sessions.

So these end up in the bookmarks list just the same, so for this reason a separate

bookmark file is adopted and is called Fast Bookmarks. This is a flat linear list of

bookmarks to which the user will add. To offer easy maintainability when the list

reaches its maximum length then the first item in will be deleted so as not to have this

list grow linearly. A typical operation which is useful is the “Bookmark all Open Tabs”.

 - 32 -

In this case this function would add the open tabs to the Fast Bookmarks List instead

of the standard Bookmark list.

This list can offer a solution to another situation, for instance when the user needs to

close the browser but wants to save the current open web pages to resume viewing

them later on. In such a scenario the user might not be sure if they need to be

bookmarked or where to bookmark them. If such a feature was not present many

users would bookmark them “just in case” as they might turn out to be useful and in

many cases the bookmark file would end up filled with useless bookmarks or

misplaced bookmarks.

3.4.5 The Bookmarks

The first step is to create a data store where bookmarks will be stored. For this

reason a file which resides in the user’s profile directory is created. This file contains

all the bookmarks and categories that the user creates. Each bookmark is allowed to

be added to one category only. Reducing duplicates makes the bookmark archive

smaller but this approach assumes that each page is on one single topic. If an

already bookmarked page is rebookmarked this will result in a move of the bookmark

from the other category, notifying the user of the move.

This approach was adopted to try and reduce the number of bookmarks inside of the

bookmark file. It also makes it easier to classify a webpage as if duplicate bookmarks

are allowed then classifying would become much more complex, as to decide where

to place a similar webpage. But this approach has the disadvantage that the user is

not capable of bookmarking a webpage into two categories simultaneously.

Each bookmark holds the following attributes given in Table 1:
Table 1 Bookmark Attributes

Attribute Description

Name Name of the bookmark

URL URL to the page

Page Title Title of the page that the bookmark represents

 - 33 -

Add Date When the bookmark was added

Last Visited The last visit date

Visit Count Number of visits since added

Icon Favicon of the web site

Thumbnail image path Path to thumbnail cache on disk

Cache path Path to page in bookmark cache

Keywords Keywords that represent the page

Each category in turn has the following attributes given in Table 2:
Table 2 Bookmark Category Attributes

Attribute Description

Name Category Name

Keywords Union of keywords (duplicates removed) of the children in

that category.

There is no limit for the number of categories a user may have but a limit to the

number of bookmarks inside of a category is specified in order for HyperBK to prompt

the user when the bookmark category exceeds this limit. In this case HyperBK will

help the user to divide the bookmarks into subsequent categories.

3.4.6 The History

The history takes a similar approach to the bookmarks. In fact the history too is

stored in a file in the user’s profile directory. The categories will be identical to those

found in the bookmark file. Table 3 lists the attributes each history page entry has:
Table 3 History Nodes Attributes

Attribute Description

Name The page title

URL The page URL

Last Visit Date The time and date the page was visited last.

Keywords Page keywords

Referrer Page URL that lead to this page

Visit Count Number of times page was visited

 - 34 -

Categories inside the history are much simpler as they only hold their name. All page

classification is done with respect to the bookmarks and not the pages inside of the

history.

3.4.7 Storing the Bookmarks and History

Bookmarks/History have to be stored on disk in order to be retrieved in the

subsequent sessions. The structure of the bookmark file needs to be an efficient one

so that fast searching of the bookmarks and manipulation can be performed. In fact

for efficiency this bookmark list needs to be loaded in memory at startup and flushed

back to disk at the end. The history needs to be very efficient too as it contains loads

of entries as these add up to the total number of page visits a user makes in a 20

(approximately) day period.

RDF (ref section 4.4.2) is a versatile solution for this; first of all, all RDF documents

have to be loaded into memory at startup before being modified. The structure of the

file is stored as a simple ASCII text thus platform independent in the case it needs to

be ported from one platform to another.

The RDF parser offers quite a great deal of functionality as one can query the data

source for the required node instead of having to traverse all nodes. The structure of

RDF itself makes it quite easy to maintain the bookmark/history structure where each

folder can be an RDF Seq Container which contains a number of bookmarks or other

containers. As the URI of each node will be the URL of the page itself, so in this

manner duplicates are excluded by the underlying model itself.

3.4.8 Bookmark Caching

To avoid the situation where a bookmarked page is offline and thus cannot be

accessed, a copy of the bookmarked page is stored onto disk once a page is

bookmarked. This can also happen if the page moves to a different location. When

the user tries to visit a bookmark page and this fails to load the copy from cache will

be loaded instead, thus the user can see a copy of the bookmark at all times.

 - 35 -

3.4.9 Bookmark Verification

From the nature of the WWW itself, web pages get taken offline all the time thus a

feature to verify if a bookmarked webpage still exists would be useful. This tool

should run when requested by the user and checks whether a page is online or

offline and possibly checking if the document has been updated since.

3.4.10 Page Relocation

When a bookmarked page is dead or offline the user has the possibility of relocating

the page by using a search engine. With this feature HyperBK will try to give a list of

documents that seem to match the ones that the user is looking for. To accomplish

this task the search uses the title of the offline page which should give a list of near

matches.

3.4.11 History

As each web page is classified on page load then the browser can keep a list of

visited URLs and their equivalent category. This is in fact the browser History which

is given this bookmark view, as if all visited pages are to be bookmarked. This history

is in fact a different history from the history the browser already maintains and

contains all the necessary information about the visited websites.

This contains each website visited with the date and time, and the referrer of that

particular page. Each page is placed in the appropriate category or else into a special

category named ‘Uncategorized’ which contains pages that the categorization

algorithm could not categorize.

 - 36 -

Category 1

Category 2

Bookmark A

Bookmark B

Bookmark C

Bookmark D

Category 1

Category 2

Page C

Page A

Page B

Page D

Bookmarks History

Pages were automatically
classified to be similar to
Bookmark C & D

Page automatically classified to
be similar to Bookmark A & B

Figure 8 Relation between bookmarks and history categories

The problem with history has always been the same; it’s too vast, complex and

nobody remembers the exact page title and page URL that was used to refer to a

particular page. In fact a user will forget most items/pages that were visited and is

unlikely to recall what a random visited page was used for [11]. With this view (Figure

8) the history will match more the mental representation that the user has as it’s more

likely to remember that a site refers to a particular topic then remember the title or

date it was visited.

Although the history is categorized by topic the user still should be allowed to apply

different filters to it in order to facilitate him so that previously visited pages can be

found. This filtration will include time, and date filtration but also keyword search,

which includes searching through page title, URL, and even keywords.

3.4.12 Bookmark Category See Also

The user may wish to view similar websites/webpages to those inside of some

particular category. To accomplish such a task HyperBK would query a search

engine with an automatically generated query and get a set of results. This query

generated using either of these two methods:

• The first method will use the most popular keywords from the bag of keywords

that represent a particular category. Instead of performing a normal Google

search this search will be performed on Google’s directory which is a directory

of websites divided into their appropriate category.

 - 37 -

• The second method uses a query which is generated from past queries

performed by the user. The query sent will be formed from the most popular

search terms used in that category. For this reason what has been termed as

SE Referrer (Search Engine Referrer) is stored with each bookmark.

3.5 The SE Referrer
A Referrer to a webpage is the previous page that was visited before the webpage.

Obviously URLs entered into the address bar directly or clicking on a bookmark do

not have any referrer, but those visited by following some link on a page have.

Firefox maintains the correct referrer even if the link is opened in a new tab or

window.

The SE Referrer (Search Engine Referrer) is the most recent search engine results

page that was visited (Figure 9). Many users start browsing by visiting their favourite

search engine and performing a search query. Thus when a user bookmarks a page

this SE referrer is looked up and stored with the bookmark (if it exists).

Figure 9 Webpages and their SE Referrer

This SE Referrer has other uses too; in fact many times a user might want to recall

the search query used to find a particular page. Thus storing the search query is

useful not only for looking up similar sites but in helping the user figure out what was

the query used to find that particular bookmarked page.

 - 38 -

3.6 Summary

In this chapter the design and specification of HyperBK was put forward. First an

overview of the whole system was illustrated. Following this a more detailed

description of HyperBK was given; which included the web page parsing, the

classification algorithm, the bookmark/history files, and the bookmark/history

management tools. Finally the SE Referrer is described and how it can be used to

determine what the user is looking for.

 - 39 -

Chapter 4: Background to Mozilla Platform

4.1 Introduction
This chapter gives an overview on the platform and technologies used to build the

artefact. In the first section an overall view of the Mozilla platform and its mayor

components is given. Then in the section that follows the mayor technologies used in

this extension are explained namely: XUL, RDF, JavaScript and SOAP.

4.2 Why Mozilla Firefox
Mozilla Firefox is an increasingly popular web browser, currently (March 2006)

holding 7% of the browser share against Microsoft Internet Explorer which has 88%

[27]. These statistics basically excludes development on other browsers as their

usage is quite low. The biggest advantage gained when developing for Firefox is due

to the support it has for extensibility. The platform itself was made to support

extensibility thus adding functionality is not complex. There is also a great amount of

work going in this area and lots of extensions are being developed and distributed.

Together with this one must not forget that Firefox runs on more than one platform

including Windows, MacOS and Linux.

4.3 The Mozilla Platform
The Mozilla Platform provides the framework upon which Mozilla products like

Firefox, Thunderbird, Camino, and the Mozilla browser itself are built. The Mozilla

project started after Netscape released for free the source code of Netscape

Navigator. The Netscape products prior to Mozilla did not use this platform and their

structure was quite complex as in fact they did not use a layered approach. This

complexity in fact limited the amount of functionality that could be offered. As a result

the Mozilla platform was developed in a layered fashion in order to solve this

 - 40 -

problem. Basically the four important features of the platform are XUL, JavaScript,

RDF and XPCOM.

 XUL (XML User Interface Language) uses syntax to define the user interface.

 JavaScript is a scripting language with syntax similar to C to define functionality.

 RDF uses XML syntax to store data.

 XPCOM (Cross Platform Component Object Model) is an object discovery and

management system.

All of these features make it possible to build interactive applications.

4.3.1 XPCOM

The bottom layer of the Mozilla platform is the XPCOM, which is a series of objects

which can run on multiple platforms. Access to any of these objects is only available

through C and C++ languages. For this reason there is another layer called

XPConnect which makes it possible to use these objects from the JavaScript.

There are various XPCOM components but the most popular are those which

process the XML/HTML content and provide the W3C DOM view to the XML/HTML

document. Other XPCOM components are responsible with streams, and

communications. The portion of the objects that are responsible with layout and

rendering objects to the screen is known as the Gecko.

Each component has its own name which is made up of a contract ID followed by the

version number like the following: @mozilla.org/browser/httpindex-

service;1. XPCOM is very similar to COM as each component has its own type

library (.xpt file) which is what makes these components portable.

 - 41 -

S
ec

ur
ity

P
or

ta
bi

lit
y

XP
C

O
M

X
P

C
on

ne
ct

[C
on

tra
ct

 ID
]

U
R

L

O
pe

ra
tin

g
S

ys
te

m

Figure 10 The Components that make up the Mozilla Platform

Figure 10 illustrates the structure of the Mozilla platform. As one immediately notices

there is a split within the platform and linking the two sides is XUL, RDF, and

JavaScript.

4.3.2 The Chrome

The installation of any Mozilla application is basically divided into three parts:

 The user configuration files like user/application settings, bookmarks, history

etc. which would normally reside in the user profile directory.

 The system executables and libraries.

 Other application files which reside inside a location called the chrome. Such

files would include data files, documents, scripts, images and other similar

content. The chrome is referenced with a special URL scheme chrome:// (just

like file:// and http://)

The chrome is in fact portable and in many cases the files present in it are identical

for all platforms, be it a Mac, Microsoft Windows or Linux PC. This is due to the fact

that inside the chrome XUL and JavaScript documents are usually stored.

4.3.3 Overlays

The power of this platform is in the extensibility and flexibility it offers. New XPCOM

objects can be added and new XUL documents can be inserted into the chrome. Not

only new XUL documents can be added but existing XUL documents that were

written by other developers can be modified with the use of overlays.

 - 42 -

An overlay is quite a simple feature but yet offers a lot of power in itself. It is a piece

of XUL code which will be merged into another XUL document. All this merging will

take place as the XUL document is loaded before its content is displayed on screen.

Thus a programmer can insert his own UI elements and the JavaScript in any part of

the application increasing the feature and functionality of that application.

4.4 Technologies Used

4.4.1 XUL

Mozilla applications use XUL (XML User Interface Language) to describe all the

visual elements that are present on the screen. XUL uses XML syntax to define the

elements. There are tags for textboxes, menus, menu items, labels, buttons and all

other possible UI elements. XUL layout is guided with the use of the box tags which

can have vertical or horizontal alignment.

The XUL will be loaded into the DOM (Document Object Model) which is a large in-

memory structure. This DOM is not interested with the display; it is just a way of

storing the XML structure into memory.

Figure 11 XUL code and the equivalent structure

The above example (Figure 11) is XUL syntax consisting of four box elements, and

five labels. Elements inside the hbox have horizontal alignment thus they are

 - 43 -

displayed one beside the other, while elements inside of a vbox have vertical

alignment thus they are displayed one on top of the other.

4.4.2 RDF

RDF (Resource Description Framework) was developed to describe any object on

the web. This formal data model from W3C which uses XML tags to describe its

contents can be used in lots of scenarios other then to describe web resources. In

fact the Mozilla platform uses RDF extensively not only for storing data but also as

manifest files, jar content files and so on.

RDF provides a model for describing resources where each resource has a number

of properties (attributes). Each RDF resource can be thought of as a unique object

uniquely identifiable by a URI (Uniform Resource Identifier). The properties

associated with each object have their respective property types and values. Each

property will represent a relationship between the property value and the object itself.

This value can in fact be another object or else an atomic value (string, integer etc)

RDF is based on facts which describe the data not like other data structures which

have only attributes. These facts can be described using what is known as the 3-

tuple, each consisting of a predicate, subject and object. E.g. (predicate, subject,

object) - (isa, Search Engine, Google)

Search EngineGoogle isa

www.google.com

URL

Figure 12 RDF Node Graph

An object with multiple facts can be represented using an RDF container. Thus if one

looks at the above example the Search Engine can be a container with multiple

instance of search engines inside of it, being Google, Yahoo, MSN and so on.

 - 44 -

4.4.2.1 RDF Syntax

As described earlier RDF uses XML like syntax, but unlike XML there are only a

limited number of RDF tags, which are:

• <RDF> tag which is the top root node.

• <Description> tag which will contain the facts to describe some object.

• Three container tags <Seq> <Bag> <Alt> which would contain tags

to distinguish the items inside.

Each of the above tags can have a number of identifiers which are used to identify

whole facts. They can also be used to replace literals about some object, thus

instead of using a tag inside another all the literals go specified as attributes.

The three containers in RDF, the Seq, Bag and Alt hold a list of resources. The Seq

represents an ordered list in which the contained items are ordered. Bag on the other

hand is just a collection like a normal bag with no restrictions on the items contained

inside of it. Alt stands for alternative where the contained items inside of the container

are considered to be equivalent to each other. Each item inside of the container is

enclosed in the tag.

Figure 13 Sample RDF document

<?xml version="1.0"?>
<RDF:RDF
 xmlns:NC="http://home.netscape.com/NC-rdf#"

xmlns:RDF="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <RDF:Seq about="NC:DownloadsRoot">
 <RDF:li resource="C:\tmp\test_save.html"/>
 </RDF:Seq>

 <RDF:Description about="C:\tmp\test_save.html"
 NC:Name="test_save.html"
 NC:ProgressMode="none"
 NC:StatusText="Finished"
 NC:Transferred="1KB of 1KB">
 <NC:URL resource="http://www.mozilla.org/"/>
 <NC:File resource="C:\tmp\test_save.html"/>
 <NC:DownloadState NC:parseType="Integer">1</NC:DownloadState>
 <NC:ProgressPercent NC:parseType="Integer">100</NC:ProgressPercent>
 </RDF:Description>

</RDF:RDF>

 - 45 -

The above (Figure 13) is a sample RDF document. It consists of a Seq Container

node which contains one item. This item which has its URI (C:\tmp\test_save.html)

has a number of facts such as the name, download state, mode and so on.

4.4.2.2 Querying the RDF

For RDF to be useful one must be capable of querying the data source and get the

required nodes out of it. There are two ways to query the RDF and fetch its contents,

• From the XUL using the <template> tags

• From the scriptable JavaScript by using RDFDatasource XPCOM component.

Building XUL components from an RDF file is quite flexible as this enables the

programmer to create UI content which is not fixed, but dynamic and which can

change on the nature of the data that is stored in the RDF data source. All this is

possible with the use of the template system. This query system searches through

the facts in the RDF data source and returns the objects that match the search

specification. This specification is enclosed in the rule tags. Thus every template

consists of one or more rules where each rule will contain XUL tags for the UI

elements.

The above example (Figure 14) will create a vertical box and inside of it will list of the

bookmarks, first the bookmark name and beside it the bookmark URL.

In the case that the content is to be different according to the node one can specify

rule tags. These rule tags can be used to match the type of a particular RDF node or

Figure 14 Sample XUL code with template tags (to query RDF)

<vbox datasources="rdf:bookmarks" ref="NC:BookmarksRoot" flex="1">
 <template>
 <vbox uri="rdf:*">
 <hbox>
 <label value="rdf:http://home.netscape.com/NC-rdf#Name"/>

<label value="rdf:http://home.netscape.com/NC-rdf#URL"/>
 </hbox>
 </vbox>
 </template>
</vbox>

 - 46 -

else can contain special attributes like iscontainer to match a container node or

isempty to match a container node which is empty. The rule tags would be the

children of the template tag and inside the rule tags there would be the XUL UI tags.

4.4.3 JavaScript

JavaScript is a member of the C family of programming languages as it shares much

of the syntax and structure. In fact it is a 3GL language and contains constructs such

as for, while, if, switch etc. Inside the Mozilla platform JavaScript is nicknamed

SpiderMonkey and its interpreter is implemented as a C library. Although JavaScript

is the well known name its official name is ECMAScript and in pre-releases it was

named LiveScript [26].

JavaScript code is highly portable as it does not require to be compiled for any target

machine; in fact JavaScript code is interpreted by a virtual machine like the Java VM.

Unlike Java it does not require high resource requirements thus it can be used with

ease in all environments. Being interpreted the variables are late-bound and weakly

typed. In fact all variables are declared without any type information.

JavaScript code can be found within the script tags in XUL or else in a separate .js

file being referenced in XUL through the src attribute in the script tag. This is the

preferred way of having the JavaScript code, as it divides the functionality from the UI

elements.

JavaScript statements are just like in C, the only difference is that a statement can be

terminated by the newline character. Thus the following two statements are valid and

equivalent:
x = x + 5

x = x + 5;

JavaScript supports the following native data types:
Undefined Null Boolean Number String Object

 - 47 -

The typeof operator can be used to identify the type a variable holds it will return

any of the above as a string. Each variable must be declared with the var keyword

and can be declared anywhere throughout of the code.

JavaScript also supports exceptions and has the standard try…catch block. The

throw keyword is used to throw an exception. This is quite useful for error handling

as if the JavaScript interpreter encounters a runtime error it will return from the

function it was executing.

4.4.4 SOAP and Web Services

Simple Object Access Protocol has gained much popularity over the last years. It is a

method whereby objects can be exchanged between two machines over a network

using XML like syntax. All the communication is done using simple ASCII text over

http, which makes such a protocol much powerful as it uses an existing transport

protocol which is extensively used (Figure 15).

Search engines such as Google offer a Web Services API1. A SOAP request with the

search query will be sent to Google’s Web Service which in turn will return a SOAP

reply with the search results to that particular query. This message can be examined

processed and displayed to the user.

Web Service

Service
requester SOAP

Figure 15 Service Requester, SOAP and Web Service

1 Google Web Service API URL: http://api.google.com/search/beta2

 - 48 -

4.5 Summary
This chapter give a brief overview of the Mozilla Platform and technologies such as

XPCOM, XUL, JavaScript, RDF and SOAP. These technologies are extensively used

in the Mozilla Platform. XUL is used for define the UI elements on screen, JavaScript

the logic behind each component. XPCOM is a series of objects which form the basis

of the platform. RDF is used to store data while SOAP is used to transport data from

one machine to another.

 - 49 -

Chapter 5: Implementation

5.1 Introduction
This chapter describes the implementation aspects of the HyperBK extension for

Mozilla Firefox. The first section details specifically with how the functionality was

integrated into the Firefox browser. Following this the classification algorithm is

explained. In the last section implementation aspects of the bookmark/history

management are described.

5.2 Integrating into Firefox
The integration of the bookmark and history manager functionality with Firefox is

divided into two parts:

• The first part deals with hiding and disabling the old bookmark functionality

and inserting the new UI elements into the Firefox window.

• The second part is to provide the page classification, bookmark and history

management as pages are loaded.

The first part has to be carried out before the main Firefox window loads and displays

on screen. In fact this procedure has to be performed for every new window that is

opened. An overlay is used for this purpose and it contains the following UI elements:

• ‘New’ Bookmark Menu

• Hidden ‘Fast Bookmark’ Menu (which can be then enabled)

• HyperBK Toolbar

• Browser Sidebar

• Some shortcuts in the Tools Menu

When the script loads it registers an event for the window onload event which fires

whenever a new Firefox window is opened. This event is responsible to hide the old

bookmark menu and to change the oncommand value of a number of components,

 - 50 -

like ‘Add Bookmark’, ‘Bookmark All Tabs’, ‘Bookmark Link’ and other similar

functions. This event also registers an event listener for the DOMContentLoaded

event which fires whenever a new html frame is loaded. Finally it registers an

observer which fires once a whole page has completely loaded (see Figure 16).

Figure 16 Firefox & HyperBK load Sequence

The way events are fired when a new html page is loaded is shown in Figure 17. First

an event fires for each frame that loads, which includes any inner frames and the

enclosing (outer) frame. Then the observer fires once the page has been fully loaded.

4

Figure 17 Load Events and their Fire Order

 - 51 -

So whenever a frame is loaded the registered frame event handler is called. This

event handler is responsible to parse the textual contents of the html page that forms

that frame, and to store the keywords that represent the frame in the window DOM. A

similar event is responsible to update the frame contents such as the tooltip (title

attribute) of anchor tags which point to already bookmarked links. On the other hand

the page observer is responsible to update the history and the bookmark file in case

a bookmark is visited. This is why an observer is used as it’s not directly related with

updating the window itself.

The main difference between the frame load event handler and the page observer is

that the user will see the page as loading while the frame load event handler is being

executed but on the other hand the page observer will run in the background. Also

the page observer is an XPCOM component thus common for all windows, so only

one observer is registered, not one for every window like the frame onload event

handler.

5.2.1 Building the Menus and Trees

Menus and Trees are built automatically from the RDF data source using the

<template> tags in XUL (ref section 4.4.2.2). In fact this provides flexibility to the

programmer as when changes are made to the data source the effects are reflected

to all UI elements instantly. This means that multiple windows are updated by just

modifying one data source common to all windows.

5.3 Webpage Parsing
The first step once a page has been loaded into the browser is to parse its contents

and extract a set of keywords which can be used to represent the page and its

contents so that these can be used to match the page in the ideal bookmark

category. With the aid of the Document Object Model (DOM) this procedure was

much simpler as the html document would already be loaded into memory into a

series of objects (nodes) which form part of the DOM. The textual content required is

 - 52 -

the text between tags, the content of some special attributes like the alt inside the

img tag, but excludes text in the script tags as this would be JavaScript code.

Get page textual
contents

Filter text

Remove common
words and stem

remaining

Computer term
frequency

Take top 5
keywords

Store into page
DOM

Figure 18 Webpage Parsing

Thus once a frame has been loaded, its textual content is extracted using a recursive

function which will traverse the DOM recursively. The resultant string of textual

content is filtered out to remove non-textual characters and to convert all characters

to lowercase. Once this has been carried out the top five keywords can be extracted

out of this string. This involves converting the string into an array of words and further

filtering these words from any stop words or to be more exact popular English words.

Removing stop words would not be enough as the algorithm works on keyword

matches and there are a lot of other words commonly used which are of no relevance

to the webpage’s topic (see Appendix A for the list of removed words). The words

that are left are stemmed using Porter’s stemming algorithm and then using this stem

all identical stems are grouped and counted (see Figure 18). The final result would be

a list of stemmed words together with the term frequency of each word.

From this list of words only those with a term frequency (TF) greater than one are

considered. The top five keywords which have the highest TF are extracted. It is

expected that a page has more than one keyword with a TF greater than one. But

 - 53 -

obviously once sorted those with the higher TF are more representative than those

with less. Selecting five keywords preserves this choice but on the other hand does

not result in having too many keywords for one page. In the case that the page has

five or less words with a TF greater than one then only half this number is selected,

as those with low TF would not be representative on the page’s content.

The above algorithm is good but there is a feature present in most html documents

which can produce better keywords. Many html documents have a list of META

keywords in the head section of the page. These are quite indicative on the topic of

the page and so they are used to boost up the keywords that are extracted from the

textual content. Thus the META keywords that appear frequently inside the page

contents will be selected. In this way the top five will be more indicative of the actual

page topic as META keywords would have been entered by the page author.

5.4 Webpage Classification
The classification of a webpage into a bookmark category is done using the following

two features of the webpage:

• The URL (more specifically the domain)

• The top five webpage keywords

Each bookmark category is represented by the union of all keywords (with duplicates

removed) that the containing bookmarks have. A small enhancement that was

adopted was to select only keywords that were present in more than one bookmark in

the case that there was a sufficient number of keywords to represent a particular

category. Thus the keywords of the webpage are compared with this bag of keywords

of each category. A score is given to each category according to the number of

matches, the more matches a page has, the more a page is said to match a

category.

 - 54 -

Figure 19 HyperBK Webpage Classification Algorithm

 - 55 -

But this is not the only way how a webpage is allocated to a category; the URL plays

an important role too. If a category has a webpage with the same domain as the

webpage being compared with than this is considered too. The category with the

highest word hit is the allocated category but if a category has lower ranking and has

a URL match then this takes over. The URL match is only considered if at least one

keyword match exists for that category. This is due to the fact that on the WWW

different websites can be hosted under the same domain name.

If none of the above methods give any result the page title is compared with the

keywords of each category. This method is used as the last way to detect a page into

a category, as in fact a page with little content will always have a title and this can

give a good indication of the category the webpage fits in.

(Refer to Figure 19 for the flowchart of the classification algorithm.)

5.5 Bookmark and History Data sources
The Mozilla platform has a powerful built-in XPCOM RDF service which maintains

and manipulates RDF files with ease. This proved to be a powerful method of storing

the bookmarks on disk. RDF is a flexible way of updating the data as the underlying

service handles how the file is represented. It gives to the programmer an abstract

view whereby each bookmark is represented as an RDF node, and the category

which groups a number of bookmarks would be an RDF container node.

Each bookmark is represented inside of the RDF by its URL as this is unique and

each folder by its name. This introduced the fact that each folder had to have a

different name. Although this might seem to be a disadvantage it makes it easier for

the user not to mix up categories which have the same name but reside in different

folders. Each node would contain a list of literals describing the bookmark, such as

the last visit date, add date, name, page title, location of cache on disk, etc. (see

appendix)

 - 56 -

Container nodes are of the SEQ (Sequence) type as order inside of the container is

important (see section 4.4.2.1). No bookmark was allowed to have more than one

parent as this would lead to duplicate bookmarks in the bookmark file. The idea is to

keep the bookmark file as small and organized as possible. The root node is

NC:BTopRoot which has only one child NC:BookmarksRoot which is the container for

all bookmarks/categories that are stored (see Figure 20).

NC:BTopRoot

NC:BookmarksRoot

Figure 20 Bookmarks Data source Nodes

The History is quite similar in structure to the Bookmarks data source. In fact even its

hierarchal structure is identical to the bookmark data source. This actually means that

whenever the user creates a new category in the bookmark data source then another

similar category is created in the history data source. Similar for deletion and

renaming where the equivalent category in history would be updated too. The only

two differences is that in the history the container nodes are of BAG type (see section

4.4.2.1) as order in the history is not important and in addition to the containers inside

of the bookmark data source there are two additional containers called

NC:Uncategorized and NC:Search_Pages which is the children of NC:BTopRoot (see

Figure 21). In NC:Uncategorized uncategorized webpages would be placed while in

NC:Search_Pages would contain search pages results. Each webpage in the history

data source would have stored with it the keywords that represented that page

together with the visit date and time. This visit date and time is updated once a web

page is revisited.

 - 57 -

NC:BTopRoot

NC:BookmarksRoot

NC:Uncategorized

NC:Search_Pages

Figure 21 History Datasource Nodes

5.6 Adding a Bookmark
The process of adding a bookmark is made as simple as possible to speed up the

bookmark process. Basically there are two methods:

• One way of bookmarking a page is to click on the Add Bookmark command or

pressing ctrl-D. This operation will open the add bookmark dialog which can

be seen below (Figure 22). This consists of the bookmark name which can be

modified; bookmark URL which is fixed, a thumbnail of the webpage and a list

of folders (categories) where the bookmark can be placed into. The webpage

classification algorithm will highlight the highest matching category

automatically. The user can easily change this selection by clicking on another

category. In the case that the webpage classification algorithm does not find a

matching category then the bookmark category which was last bookmarked in

will be selected. (As is done by default by Firefox, IE 7 etc (see section 2.6)).

Whenever the suggestion differs from the last category bookmarked into a

button to bookmark in the last category is made visible. In Figure 22 the button

 - 58 -

“Bookmark in University of Malta” would enable the user to bookmark in that

category, as it was the last category bookmarked into and as this differs from

the one suggested (i.e. Mozilla).

• The second method adds the bookmark to a particular category from the

Bookmark Here command at the top of each bookmark category (from the

main menu). This will automatically bookmark the page in that category

without opening any dialogs. It’s a fast way of bookmarking a page without the

need to modify anything. This method does not use the classification algorithm

as the user will click the respective Bookmark Here link in the destination

category.

Figure 22 Add Bookmark Dialog

5.6.1 Bookmark Name Reduction Algorithm

Initially the bookmark name is set to be the page title, but in many cases the page

title is rather long and contains phrases which can be removed. This algorithm

enables the user to reduce a long bookmark name automatically or by a click. This

 - 59 -

algorithm removes text which appears after the ‘-‘, ‘:’ or ‘|’ characters provided that

they are not in the first few characters. Many web page authors include such

characters to divide their title. In the case the title starts off with the phrase

“Welcome” or “Welcome to” this is also removed.

5.6.2 Adding a Category

The user can create a new category by clicking on the ‘New Folder’ button in the Add

Bookmark Dialog (Figure 22). This will open up the Create New Folder Dialog shown

in Figure 23. This dialog retains the same style as the Add Bookmark Dialog with a

full tree which the user selects the parent folder where to put the new created folder.

In case that none or selected the folder will go in the root folder.

Figure 23 Create New Bookmark Category Dialog

 - 60 -

5.7 Operations on Bookmarks
The bookmark manager (Figure 24) offers some functions to manage the bookmark

folder. These include deletion of bookmarks, moving bookmarks from one category to

another, changing the position within the same category, and renaming of

bookmarks. All these functions manipulate the RDF data source directly.

Figure 24 Bookmark Manager

Below is a list of the operations and what happens internally:

• Delete – deletes the RDF node from the data source and page from cache and

thumbnail unless it’s a bookmark category. In such a case all bookmarks

inside of it are deleted recursively. In the case of a category the equivalent

history category is also deleted.

• Rename – changes the RDF node name attribute.

• Move Up/Down – removes the RDF node from the container and inserts it at

an index +1/-1 from current unless it’s at position 0/end already.

• Move to Different Category – removes the RDF nodes from the container and

adds it to the new category.

• Sorting – sorting is done by arranging the nodes inside of a category to be in

ascending order by their name, but categories are considered as smaller than

bookmarks so they will be placed at the beginning of the list.

 - 61 -

5.7.1 Bookmark Verification

This is a utility (Figure 25) which will check if the bookmark is still active by sending

an http HEAD request to the server. On response the user will be notified on the

response code that was returned. A code of 200 indicates that the page is still online

while other codes normally mean failure. If the page is not a dynamic page then the

server returns the last-modified-date. This can be used to check if the bookmark has

been visited since it was updated and notify the user if it has.

To send the HEAD request an XMLHttpRequest is used. XMLHttpRequest can either

work in synchronous or asynchronous mode. In this case requests are sent

asynchronously to be capable of updating the UI (activity percentage bar) while

response is waited.

Although this utility can detect if a bookmark is offline it cannot make decisions on

whether to delete a particular bookmark. This is due to the nature of the www. Some

sites are offline for days, maybe even months but then they come online again. It’s in

the hand of the user to decide whether or not to delete an offline bookmark.

Figure 25 Bookmark Verification Utility

5.7.2 Bookmark Manager with Thumbnails

This is another bookmark manager which uses a different approach and layout than

standard bookmark managers. Instead of having the bookmark represented by their

 - 62 -

name (normally being the page title) it shows a much deeper description by using a

thumbnail of the web page.

It has been shown in [16] that the title and page thumbnail (referred as minipage) is a

better representation than any other representation. This is due to the fact that

nowadays many webpages have their own graphic content which is unique and the

user has more chances of remembering the page layout and graphical content than

the name or URL. Thus this secondary bookmark manager (Figure 26) adopts this

approach and a thumbnail (100pixels by 100pixels) is shown beside each bookmark.

Figure 26 Bookmark Manager with Webpage Thumbnail

This thumbnail is generated by using the new html canvas features present in Firefox

1.5. It uses the same functionality Firefox uses to draw a window onto screen but

obviously reducing its size. This is saved to disk in png format inside of a folder

(named hyperBKIC) situated in the user’s profile directory using an XPCOM

component from Pearl Crescent.

5.7.3 Bookmark Import/Export

To make it easy for users to switch from other bookmark managers to this there is the

option whereby bookmarks can be imported from a Netscape bookmark file. When

this is done the bookmarks are inserted into the RDF data source in their appropriate

 - 63 -

category and the equivalent history category is created. The only problem is that pure

classification cannot start until all bookmarks have been visited at least once. This is

due to the fact that each bookmark needs to have the set of keywords that represent

it. For this reason a First Bookmark Visit Tour is available.

Similarly an export utility which exports the bookmarks from the RDF data source to a

Netscape bookmark file is available. This operation is available through a wizard for

simplicity. The output is either an RDF file (for backup) or else a Netscape bookmark

file which is compatible with all the other browsers.

5.7.4 First Bookmark Visit Tour

This tour is to be used normally after the user imports a set of bookmarks from an

external file. This tour will make it possible to visit all bookmarks that were not visited

in sequence. These unvisited bookmarks will not have any keywords so once visited

these will be updated. As a network enhancement images are not loaded during the

tour so that the pages download faster.

5.7.5 Divide Category Wizard

When a category exceeds the number of bookmarks that it holds a special wizard is

popped up. It is used to limit the number of bookmarks inside a category which

defaults to 20, which is approximately the number of bookmarks that can be visible

simultaneously inside a menu (without scrolling). This number can be

increased/decreased through HyperBK preferences as the user wishes.

One might argue that such a feature is intrusive to the user as it will popup after

bookmarking a page. Although this is true, it is the only way a bookmark category can

have its size kept within bounds. But note that this wizard can be cancelled although

it will popup the next time a bookmark is added to the same category. To be disabled

forever the user must set from preferences the maximum number of allowed

bookmarks in a category to be 0. In this case a bookmark category can have

unlimited bookmarks inside of it.

 - 64 -

The wizard operates in 3 simple steps.

1. First it will prompt the user to create a new category (Figure 27).

2. Then the category with the exceeded size will be divided either manually or

automatically. In the latter the user will still be capable of doing any

modifications to how the new category has been built up. The automatic

division algorithm works by computing the top three keywords that are present

in a category and all subsequent bookmarks that have these three keywords

are kept in that category. Those that do not are moved to the new one (Figure

28)

3. Clicking on Finish will save the changes.

Figure 27 Limit Wizard (Create New Category)

A problem with this feature is that under the Bookmarks’ Root, different categories

with totally different topics are present. Thus the above algorithm will fail as no equal

keywords will be found. Another problem is that some users might want to have

particular webpages bookmarked under the root anyway. For these reasons the

Bookmarks’ Root Category is excluded from the limit wizard and can have unlimited

number of bookmarks/categories.

 - 65 -

Figure 28 Limit Wizard (Divide Category)

5.7.6 Bookmark Relocation

When a bookmark fails to load HyperBK will load a copy of the webpage from local

cache. This can be done as after bookmarking a page a copy of the webpage is

saved in a cache for bookmarked pages situated in the user profile directory. After

being loaded from cache HyperBK will generate a search query to try and relocate

the document. This search query consists of the page title. The user can then

manually look for a result which might match the offline document.

Perfect relocation is quite difficult, for the following reasons:

• A document changing location can also change in structure (being re-updated)

• There might exist multiple copies of a document, of different versions.

• The search engine might not have been updated still thinking that the

document is online

 - 66 -

5.8 History
As soon as a page has finished loading its URL is added to the history list. The

history contains the following data about any visited page:

• Page title

• Page URL

• Page keywords (used in classification algorithm)

• Date and time last visited

• Page referrer

The categorization process is similar to that performed when a page is bookmarked.

The only difference is that the page entry is added to the history not to the bookmarks

and if the categorize method returns no result the node is inserted into the

uncategorized container. Search pages from Google, MSN, Yahoo or any other

search engine are added to the Search Pages category. This ensures that all

searches are grouped under one single category.

A particular URL can only be present once inside of the history and child of only one

category. Once a page has been added to a particular category it stays in it, even if a

newer category is created and this matches more than that particular page. This is so

for performance reasons as it would be too time consuming to rearrange the whole

history every time a page loads. Although this is expensive it can be easily

implemented if required as the page keywords are stored with each history entry. A

page may only change category if it is re-visited and a better match is found.

Unfortunately this leads to a problem: if a user revisits a webpage by clicking on it

from a category in history viewer window (Figure 29) and when the webpage loads a

better category is found then this would disappear from that category and appear in

another, becoming lost from user’s sight.

As an example take that Page X visited some time ago is situated in Category A.

While viewing the history list from the History Viewer Window (Figure 29) the user

decides to open Page X (by clicking on it). In this particular case as soon as Page X

loads, the algorithm finds Category B which suits more Page X, so Page X is moved

 - 67 -

to Category B. The problem is that as the page moves the page entry in the history

viewer window moves too and it won’t be visible, unless the Category B is expanded.

Figure 29 History Viewer

5.8.1 History Views

Although the history is already divided up into the bookmark categories, the use of

filters to filter up the number of history entries is still required. The filters that are

available to the user are:

• By Date

• By Section

• Visit Count

• Keyword

• By Same Visit Period

The history still maintains the structure of the bookmarks hierarchy; the only

difference when one of the above filters is applied is that the history entries are

reduced to match the filter parameter. Each of these filters is applied by traversing all

the nodes in the history data source and selecting those that match the filter

parameter. Containers are never excluded from the results except in the ‘By Section’

filter which would display only one category.

The ‘By Date’ filter requires its parameter to be a date. Only pages that were visited

on that date will be displayed. The only problem with such a filter is that as the history

 - 68 -

only stores the last visit time and date so if a page is visited more than once the most

recent visit will override the previous one. This obviously leads to loss of important

information when the user might want to see pages that s/he visited in the same

period before the last visit. This approach was adopted as browsers (Firefox and IE)

use this method of storing the history list. In fact this approach reduces drastically the

number of history entries as 58% of pages visited are revisits [8]. If this approach was

not adopted then in my opinion the history list would be too large and thus much

more complicated to traverse.

The ‘By Section’ filter will filter out all categories except the selected one thus the

user can reduce the number of nodes on screen to be able to traverse this category

more easily.

The ‘Visit Count’ filter will show all pages that were visited more than the visited count

parameter.

The ‘Keyword’ filter will show all pages that match the keyword entered with the page

title, page URL, or keywords that represent that particular page.

The ‘Same Visit Period’ is a different kind of filter. It will be applied to a particular

page and will show all pages that were visited in the same time span as that page

was visited. The timeframe taken is that of two hours before and two hours after by

default but this value can be changed from the preferences in “Same Period”

parameter (see section 5.12). This is particularly ideal if a user remembers a page

that s/he visited but does not remember the page s/he requires but just knows that

they were visited in the same period. Such a filter should pick up such a page.

5.9 SE Referrer
In many cases a user starts off his browsing sessions from a search engine. The

search query that a user uses to search for a particular page is a good indicator of

what the user is looking for especially if one of the results is bookmarked. So with

each bookmark the so called SE Referrer is stored. This is the search engine results

 - 69 -

page URL that was used to find the page. For this reason when the user decides to

bookmark a page the URLs in history that follow that trail must be checked to see if

any match a particular search engines’ result page.

For this reason to allow flexibility the Firefox preference

extensions.hyper.seurl holds part of the search engine search URL together

with the query variable in the following format:

searchengineurl,variable;
searchengine.com/search,p;searchengine2.com/results,q;

The above encoded string would match URLs like the two below:

www.searchengine.com/search?p=cats

www.searchengine2.com/results.aspx?q=cats

These URLs would refer to two search engines’ pages URLs with a search query on

the term ‘cats’.

As a default value this preference is given the following string:
google.com/search,q;yahoo.com/search,p;msn.com/results.aspx,q;

This should match Google search page, Yahoo search page and MSN Search results

page. The user can easily modify in case the search engine changes the URL or add

other search pages URLs to satisfy his needs.

To find the SE Referrer of a bookmark the history is used. This is possible because

each history entry consists of the webpage URL together with the referrer URL that

lead to that webpage. So when a webpage is added to the bookmark list, its referrer

is checked to see if this matches a search engine’s search page URL. If not then the

referrer of this page is checked and so on till a valid one is found or else a null

referrer which would indicate that the browsing started off by following a bookmark,

link from history or manually entered URL.

Firefox maintains the correct referrer when any link is clicked. In fact when a new link

is opened the calling function takes as a parameter the link URL and the URL of the

referrer. This means that the referrer is always valid for links in web pages even if

 - 70 -

they are opened in a new window, new tab, or the same existing tab. Thus if a

referrer is valid the SE referrer can be located (if it exists).

Figure 30 SE Referrer Finding

5.10 See Also
The ‘See Also’ feature is used to fetch a set of similar pages from a search engine.

The two different methods that are used to compute the query for the See Also are:

• By using the SE Referrer

• From the top page keywords

5.10.1 Using the SE Referrer for ‘See Also’

The SE Referrer is particularly useful to search for similar web pages that can fall

inside of a particular category. By grouping all the terms from the queries found in all

SE Referrers that are present inside a particular category, the top used terms are

 - 71 -

then used to construct a query which will be sent using SOAP to Google. Google will

conduct the search and produces a set of results similar to those present already in

the category.

Figure 31 See Also (using SE Referrer)

5.10.2 Using the top Keywords for ‘See Also’

A different approach for constructing the query that is used to find similar pages to a

particular category is to use the keywords that are extracted from the pages

automatically. These are the top five keywords that are used in the classification

algorithm. By grouping them and finding the most common a search query can be

constructed. In my opinion there is a problem with this query, as from the couple of

examples tried out the results were very poor. For this reason a different approach

was taken, instead of using the standard Search over the WWW the search was

done inside Google’s Directory. In this case the results were satisfactory. (See

evaluation section 6.3.3)

Figure 32 See Also (using Automatic keywords)

5.11 In Page Suggestion
This feature is used to indicate to the user the links found inside of a page that are

already bookmarked. Each hyperlink inside of the page if bookmarked will show a

tooltip saying “HyperBK Already Bookmarked Link”. This tooltip approach is taken not

to disrupt the page contents like it would happen if an arrow is inserted or change of

link colour. Moreover if link colouring was adopted there is the problem that recently

 - 72 -

visited links (which are also bookmarked) would have their colour changed overriding

the visited hyperlink colours the browser sets. This is due to the fact that Firefox does

not change the html but changes the recently visited link colour internally.

Figure 33 Tooltip over bookmarked link

This feature is extended to pages on the same path (i.e. where a domain match

occurs). On page load the list of anchor tags is traversed and each one of them has

its href attribute compared against the bookmarks’ URLs. If a match is found then a

message “Link Already Bookmarked” (Figure 33) is added to the tooltip, while if the

domain matches but not the path then the message “Other link on same path already

bookmarked” (Figure 34). In the case there is an existing tooltip this is appended to

the bottom of this tooltip below the <hr> (horizontal line) as in Figure 34.

Figure 34 Tooltip over link with same path as bookmark and link title shown underneath

To show this tooltip instead of the standard custom title attribute a new attribute was

added (i.e. htitle). The tooltip is a custom html element which is added inside of a

script tag on page load. This feature is controlled by two options in preferences (ref

Section 5.12). These two preferences can turn off this feature, the first option will only

offer a tooltip for URLs that match a page while “On Same Path too” will result in a

tooltip where the domain matches but not the path.

 - 73 -

5.12 HyperBK Preferences
For easy configurability a number of preferences are available to the user so that

s/he can modify the extension behaviour. A special window is used for this purpose

(see Figure 35). The preferences that can be modified are shown in Table 4:

Table 4 HyperBK User Preferences

Preference Type Default Value

Allow to rebookmark boolean true

Automatically reduce bookmark name boolean true

Maximum number of bookmarks in category int 30

Maximum number of fast bookmarks int 30

Maximum number of days in history int 20

Same Period (hours) int 2

Offer tooltip suggestions boolean true

Offer tooltip suggestions for same path boolean true

See also Algorithm int 2

Google Developer Key string null

Search Engine URLs string

Hide original Bookmarks Menu boolean true

Show Fast Bookmarks Menu on menu bar boolean false

Maximum Script Running Time int 50

 - 74 -

5.13 Summary
This chapter explained how HyperBK has been implemented for Mozilla Firefox

which includes the bookmark functionality, classification algorithm and history

management. It also described the SE Referrer, See Also and other features such as

the divide category wizard which is used to maintain the size of a category within

bounds.

Figure 35 HyperBK Preference Windows

 - 75 -

Chapter 6: Testing and Evaluation

6.1 Introduction
This chapter consists of two parts; the first section is a test report on HyperBK, the

list of test conducted and the results obtained. The second part is an evaluation of

HyperBK and of how much use it is. Following this there is a list of possible solutions

to some problems that were encountered.

6.2 Testing
When HyperBK’s implementation was completed a number of tests were performed

to ensure that the extension was working as specified. All tests were performed on

Firefox version 1.5.0.2.

Testing was divided into four parts:

 Testing overall Extension Integration

 Testing Bookmark Manager

 Testing History Manager

 Testing Classification Algorithm

The biggest problem with JavaScript code is that because it is interpreted and not

compiled some syntax errors may still be present in a piece of code even though the

script file would have been loaded and parsed correctly. The types of errors that can

occur are due to the late binding as method names are not checked on load. This

actually means that to ensure that there are no such errors each code block has to

be executed.

The first series of tests involve the extension’s integration with Firefox and such tests

were performed on three different platforms Windows, Linux and MacOS. This was

done in order to ensure that HyperBK could really run on these different platforms.

 - 76 -

Such tests involved checking that the extension installs correctly, and that the

files/cache directories are created in the proper location (user profile).

The next series of tests involved the Bookmark/History Manager; they ensured that

the bookmarks/history was being updated correctly in their respective data sources.

The operations carried out were checked to see that the results were correct such as

deletion of bookmarks, update and so on.

The final series of tests were regarding the classification algorithm. This was merely

a test to check that there were no errors in the code and not that the classifying

algorithm was correctly classifying the documents. The evaluation described later on

in this chapter was done to check that aspect of HyperBK.

Table 5 List of Tests Performed

Test No. Test Name Platform

01 Correct Extension Deployment All

02 Proper overlay integration All

03a Add Bookmark I All

03b Add Bookmark II Windows

04 Bookmark Tour Windows

05 Bookmark Manager Windows

06 Bookmark Manager Filters Windows

07 Bookmark Verification Windows

08 Bookmark Import/Export Windows

09 Bookmark load Cache/Relocation Windows/Linux

10 See Also Windows

11 Page Addition to History Window/Linux

12 History Manager Windows

13 History Manager Filters Windows

14 Browser Sidebar Windows

15 Classification Algorithm Windows

16 SE Referrer Windows

 - 77 -

6.2.1 Detailed list of Tests Performed

Test:01 - Correct Extension Deployment Platforms: All

Description: Check that deployment of xpi file is correct. This includes:

1. XUL documents, components and preferences

2. Verify that hyperBKIC and hyperCache folders are created in the user’s

profile directory.

3. Verify that the 3 RDF files: hyperHist.rdf, hyperFastBK.rdf,

hyperBookmarks.rdf are created in the user’s profile directory.

Result: Pass

Known Issues: On Linux Fedora the component from PearlCrescent failed to

install. This should be solved in the next update of the component.

Test:02 - Proper overlay integration Platforms: All

Description: Check that the extension’s main overlay correctly merges with

Firefox (browser.xul). Bookmark Menu should be hidden, Toolbar and Sidebar

should be added to menu and visible on selection, New Bookmark Menu and

Fast Bookmarks Menu.

Result: Pass

Test:03a - Add Bookmark I Platforms: All

Description: Verify ctrl-D and Add Bookmark Dialog, bookmark addition to

bookmark file and links work correctly, from Bookmark Managers, Menu and

Sidebar.

Result: Pass

Known Issue: ctrl-D failed on MacOS as key sequence is different

Test:03b – Add Bookmark II Platforms: Windows

Description: As the add bookmark is not just adding a bookmark URL to the

bookmark file then testing has to be carried out in more depth.

This things to check include:

• Adding a bookmark after following a series of links.

 - 78 -

• Adding a bookmark after following links from Search Engine results page.

• Adding a bookmark to a category where it is already present.

• Adding a bookmark to a category when the bookmark is already present in

a different category.

Result: Pass

Test:04 - Bookmark Tour Platform: Windows

Description: Test that bookmark tour moves from one bookmark to the next as

expected. Starting tour from both sidebar and menu. In the case of the sidebar

start test on category or in the middle of a category.

Result: Pass

Test:05 - Bookmark Manager Platforms: Windows

Description: Verify Bookmark operations such as Move, Delete, Rename and

Create New Category. Inspect the RDF file to check the results.

Result: Pass

Test:06 - Bookmark Manager Filters Platform: Windows

Description: Verify that filters work correctly on the bookmarks available

according to the specified parameters.

Result: Pass

Test:07 - Bookmark Verification Platform: Windows

Description: Verify Bookmark verification utility with different bookmarks. To

ensure proper functionality the bookmarks need to be with different response

codes, and having some offline bookmarks too.

Test must include:

• Starting of verification

• Stop in middle of verification

• Open Updated

• Delete of Bookmark

 - 79 -

• Relocate of Bookmark

Result: Pass

Test:08 - Bookmark Import/Export Platform: Windows

Description: Check that Import from Netscape Bookmark File works correctly and

export to Netscape Bookmark File creates equivalent structure. The import has to

be performed on both an html file exported from Microsoft Internet Explorer and

another from Mozilla Firefox.

Result: Pass

Test:09 - Bookmark load Cache/Relocation Platform: Windows, Linux

Description: This test should be done on a bookmark that is offline to verify that

the extension properly loads the local copy from cache and then generates the

re-location query and sends the search request.

Result: Pass

Test:11 - Page addition to History Platform: Windows, Linux

Description: Check that page observer will add/update page to history. The page

entry should also be ensured to enter the correct category i.e. the same category

as if it were bookmarked.

Result: Pass

Test:10 - See Also Platform: Windows

Description: Verify that See Also Algorithm returns top keywords with two

methods: SE Referrer and automatic generated query. The method used should

be equivalent to the one set in HyperBK Preferences. In the case that the user

has set to use the SE Referrer, if no SE Referrers are present than the default

algorithm should be used.

Result: Pass

 - 80 -

Test:12 - History Manager Platform: Windows

Description: Check that proper URL opens on double click and delete functions

work correctly. Also check the Highlight Referrer option which should highlight

the correct referrer of a page.

Result: Pass

Known Issues:

1. As each entry in history is kept only once then if a page is visited twice

and this page was a referrer of another page then the page flow of the

previous session would be lost.

2. Collapse All won’t collapse whole tree. This was done so as top root node

needs to be visible at all times.

Test:13 - History Manager Filters Platform: Windows

Description: Check that each filter picks up the nodes from history as entered in

the filter parameter.

Each filter should be checked with the following values

• By Date – today and any previous day

• By Section – Uncategorized and any History Category

• Visit Count – A value out of the drop down and any other value

• By Keyword – part of a URL, part of page title and keyword

• By Same Visit period – needs to be tested on bookmarks from different

days.

Result: Pass

Test:14 - Browser Sidebar Platform: Windows

Description: Check that sidebar search functions work correctly, and correct

pages are opened on double click.

The sort, delete, and rename functions have been performed on a bookmark and

a category.

Result: Pass

 - 81 -

Test:15 - Classification Algorithm Platform: Windows

Description: Ensure that correct keywords are extracted from the html document

and classification algorithm works as specified. Best way to ensure that it is

working as it should is to run it in debug mode with watches on some of the most

important objects to ensure proper execution.

Result: Pass

Test:16 - SE Referrer Platform: Windows

Description: Ensure that correct SE Referrer is retrieved and stored for a

bookmarked page. This has to be tested on a page bookmarked just after a

search page and also after following a couple of links.

Result: Pass

6.2.2 Tests Summary

The above tests ensured proper deployment of HyperBK and correct functionality

(addition, deletion and maintenance) of the bookmark/history datasources. These

tests also ensured that the UI’s layout displays correctly and in the correct format.

The tests also ensured that the html pages are properly parsed and that the content

is correctly extracted out of them. Basically all aspects of HyperBK were tested.

6.3 Evaluation
This section will give an evaluation of the system together with the problems that

were discovered after this evaluation was carried out. This evaluation process was

performed to test HyperBK functionality and get feedback of how the users will find it

of use. Although the tests in the previous section ensured that the code worked as

expected according to the test performed this is not enough to ensure that HyperBK

is of use.

6.3.1 Classification Algorithm Evaluation

The best way to evaluate the classification algorithm is to use real data. In [17] the

evaluation of the FMM (Finite Mixture Model) was carried out by selecting a subset of

 - 82 -

Reuters Newswire distribution of documents from different categories and using FMM

to classify them. The resultant classification was then compared with the original

classification, where a match would indicate correct classification.

In the case of evaluating the classification algorithm in HyperBK the evaluation was

carried out on bookmark files from real users. The resultant classification is then

matched with the one the user had done manually and if both methods classified a

bookmark into the same category this would mean that the classification algorithm

detected the best match. Although this is true there is no way of checking that the

bookmark was bookmarked by the user into the best matching category in the first

place.

As bookmarks are personal, the submission of bookmarks had to be done in an

anonymous way in order to maintain user privacy. For this reason a web portal was

created where the user could upload a bookmark file and get in return a numeric ID

to identify him throughout the whole evaluation process.

As the classification algorithm works in an incremental fashion it is not possible to

categorize a whole bookmark file automatically at one go. In fact the algorithm needs

to have some bookmarks that are already present inside a particular category to

match a new page with that category. For this reason the procedure below was

adopted in order to get fair results on the classification:

1. We created a training set and a test set by removing 10 bookmarks out of the

bookmark file at random. The removed bookmarks were kept in a separate file

for later use, including the parent category they were originally classified in.

2. The resultant bookmark file was imported into Firefox.

3. All bookmarks were visited once (using the First Bookmark Tour, refer to

section 5.7.4).

4. The bookmarks that were removed in step 1 were then visited in sequence

and each one was bookmarked to the original bookmark category. The

suggested category is noted.

 - 83 -

An alternative method to the above is to shuffle the bookmarks in the bookmark file

randomly and visit one bookmark at a time adding it to the proper category. Then one

can determine the amount of bookmarks a category requires to start matching other

similar bookmarks.

6.3.2 Classification Results Obtained

Due to the lengthy operation that is required for this evaluation as each bookmark

would have to be visited once, the operation was carried out on eight bookmark files

out of the thirty bookmark files collected. These bookmark files were collected from

all four years of B.Sc. IT students. The eight bookmark files selected were files which

were organized in some manner as many bookmark files submitted were just a

collection of bookmarks without any type of organization.

Table 6 Classification Evaluation Results

ID BKs Cat.
Root
BKs

Root
Cat. Hits Misses

Near
Hits

Approx
Precision Precision

23740 425 105 49 33 7 2 1 0.80 0.70
24166 330 64 2 26 8 0 2 1.00 0.80
88014 240 53 21 12 7 2 1 0.80 0.70
23248 197 45 6 9 5 3 2 0.70 0.50
79231 158 38 18 18 4 3 0 0.57 0.57
58917 139 29 21 11 8 2 0 0.80 0.80
76243 38 11 3 11 5 0 0 1.00 1.00
80999 22 7 1 5 4 0 0 1.00 1.00

Totals 48 12 6 6.67 6.07
Averages 4.8 1.2 0.6 0.67 0.61

Legend: BKs: Total Bookmarks, Cat.: Total Categories, Hits: bookmarks allocated into correct
category, Misses: bookmarks allocated wrongly, Near Hits: when allocated to parent category
(excluding in case off Bookmarks Root), Approx Precision: near hits + hits / total, Precision: hits / total
(refer to Figure 36).

Table 6 shows the results that were obtained. The amount of bookmarks tested for

each file ranged from ten to less in case that the bookmark file did not contain a

sufficient number of categories from which to take the bookmarks. The bookmarks

were selected from categories which contained a substantial amount of bookmarks

(more than five) in order for the classification algorithm to work.

 - 84 -

Figure 36 Categorisation Evaluation Hits

As one notices the algorithm is much more precise on average sized bookmark files.

The precision is also dependent on the way the user had sorted the bookmark file

originally. If the user adopts an approach which is foreign to the page contents (as

explained in section 6.4.2) then there is a higher chance that a page will be allocated

to a different category.

There is the possibility that when these bookmarks were classified originally by the

user as there was no hinting to a category the user may have bookmarked some of

them haphazardly. If there was hinting they may have been allocated to a different

category.

 - 85 -

Categories / Precision

0

0.2

0.4

0.6

0.8

1

1.2

105 64 53 45 38 29 11 7

Categories

Pr
ec

is
io

Figure 37 Number of Categories against Precision Obtained

The figure above (Figure 37) is a graphical representation of the Categories plotted

against precision. One notices that the less the categories that are present the higher

the precision. The dip observed in the middle of the graph is probably due to the

organization of bookmark files (ID: 79231 & 23248). Bookmark file 79231 lacks

structured organization while bookmark file 23248 has multiple categories on the

same topic (hence the two near misses).

(Refer to Appendix B for more details on how this evaluation was carried out)

6.3.3 See Also Evaluation

The ‘See Also’ feature is an option whereby the user gets a list of see also links for a

particular bookmark category (ref section 5.10). There are two methods how the See

Also query is computed: from the automatically collected keywords and from previous

search queries using SE Referrer (ref. section 5.10). Unfortunately the second

method cannot be evaluated at this time because for this to be used there needs to

be at least one SE Referrer present in the category. This can only happen if the user

would have bookmarked the page after visiting a search engine result’s page. A

number of users would need to be recruited to use Firefox with the HyperBK

extension over a period of time and this was not possible due to time constraints thus

only the first method will be evaluated.

 - 86 -

The procedure for evaluation is quite simple; some See Also queries were generated

from categories taken at random. The results were submitted to the bookmark file’s

original user. The bookmarks files used where those that were used in the

classification evaluation. Each user had to rate the search results given for the

particular category from one of the following: Useless, Good, Really Good, Prefer to

do my own Search. ‘Prefer to do my own Search’ refers to when the query generated

is not exact and some terms could be added/removed.

Table 7 shows the results obtained for this evaluation. In most of cases the score

was ‘Good’ or ‘Really Good’ (41% each). Only in one case a ‘See Also’ query was

determined to be ‘Useless’. In 12.5% of the cases the ‘See Also’ query had to be

modified which proved why it is important that the query is editable so that the user

can modify it.
Table 7 'See Also' Evaluation Results

ID Categories Useless Good Really Good Prefer my own search
23248 5 0 3 1 1
23740 3 0 2 1 0
24166 4 0 0 4 0
58917 3 0 1 1 1
76243 3 1 2 0 0
80999 3 0 1 1 1
88014 3 0 1 2 0

Totals: 24 1 10 10 3
(Refer to Appendix B for more details on how this evaluation was carried out)

6.3.4 UI Evaluation

The only way to verify how user-friendly and easy it is to use HyperBK is to carry out

an evaluation. A typical evaluation in this case will consist of having a number of

volunteers using HyperBK for some time (possibly a week or even more). Following

this a series of questions can be asked to these users on the UI functionality of

HyperBK. As browsers are used by different kinds of users with diverse skills and

knowledge the volunteers have to match this distribution for precise results.

Unfortunately such a process takes quite some time to be completed as to find

volunteers, distribute the extension and gather feedback back from each participant.

 - 87 -

For this reason it was not possible to conduct this evaluation due to the limited time

available to complete this project.

6.4 Classification and Bookmark Category Suggestion Problems
This section will describe some problems relating the bookmarks classification to a

category and some solutions to them. It also includes ways how the bookmark

categories that match could be suggested.

6.4.1 Pages with no text

As the content on the WWW can be in any format some web page authors decide to

use image files or flash animations to display textual content. In the case of image

content this problem is even more visible when the img tags have no alt text as while

parsing the page alt attributes are examined (ref section 5.3). As no textual content is

present such pages cannot be categorized. A solution would be to visit some of the

children that the page has, categorize such pages and get an indication to where the

page should fit in. This obviously leads to the problem of which children to choose

and obviously it might be too expensive to visit all of them. But on the other hand

many pages of this kind would only contain few children. Such pages are in many

cases home pages with links like “Welcome to this site” or “Click to enter site”.

Visiting such a link might be enough to correctly categorize the page.

6.4.2 Different Categories for the same topic

In some cases a user may decide to have two or more categories on some particular

topic. The criteria for addition to one category and not the other would not be based

on the content of the web pages but on some other external factor. This external

factor could be time or research project. As the web pages in such categories are

similar it would be difficult to determine how to automatically categorize similar web

pages. The solution to such a problem is not simple.

A partial solution to the above problem could be to take into consideration the time a

category was updated. If two categories exist on the same topic but one category has

 - 88 -

been updated recently then this could mean that this category should have a higher

score than the other one.

Another approach to this kind of problem would be to give options to the user where

the bookmark can be inserted. Figure 38 shows this idea, where in this case an extra

tab is added where the matching categories are displayed in bullet form. The user still

needs to have the option to bookmark in any place s/he wants by viewing the whole

tree but on the other hand the matching category tab will list all categories that

match. A problem that this dialog might introduce is that it’s much more complex and

the user might have to switch tabs as the required category is not listed. Another

problem with bullet form categories is that the hierarchal view of the categories is

lost, unless the bullets contain the parents in the form: (root…parent…child).

Figure 38 Example Add Bookmark Dialog with Tabs

A better solution to the above suggestion is to show only one tree and include an

arrow or bullet with the categories that match (see Figure 39). The green arrow would

be on the side of the categories that match and the user can select the desired one. If

the user does not like any of the suggested categories s/he can still select one of the

others. This approach would make the dialog much simpler as no tabs would be

present and might give an indication to the user which is the most appropriate

category that the bookmark should be placed in.

 - 89 -

Category A

Category A.1

Category A.2

Category A.3

Category B

Category B.1

Root Category

Figure 39 Bookmark Category Tree with Arrows

6.4.3 Better Classification

A way of improving the classification algorithm could be that of using the knowledge

of the pages that link to and out of a particular page. The reasons for not using the

children might be obvious as in many cases these would not have been visited yet

and it would be too time consuming to download and process them. But on the other

hand the parent would already have been processed. This can give a better

indication on the category the page should fit in. It can also give a better indication on

where the parent should be in the case it was classified in the wrong category due to

misleading or incomplete information.

This approach can be easily implemented in HyperBK without the need of major

changes. It can be done by fetching the referrer of a page in history and checking the

category that this referrer was allocated to. This category would then be compared

with the categories that are matching the new page. Search engine URLs would have

to be filtered out in the same way as it was done for classification in ‘Search Pages’

category in history (ref section 5.9).

In most cases the parent and child would be members of the same category. But

sometimes there might be a topic change. For this reason there needs to be

detection when this topic change happens, but for this one can rely on the page

keywords. This solution can solve the problem when a page has no textual content

 - 90 -

as described above (see section 6.4.1). If a page with no textual content is visited

and then the one of its children (which has textual content) is visited the chance that

both pages are on the same topic is high, thus using the approach the parent would

be then reallocated to the correct category.

6.5 Bookmark Related Problems
Bookmarks stored in the bookmark file are kept unique by assuming that each page

has only one URL referring to it. As it is explained in this section URLs are not always

unique. There can be a many-to-one relationship between URLs and a page, in that a

single page can be referred to by several URLs. This can lead to problems such as

the bookmark file not being correctly updated or duplicate bookmarks existing in the

bookmark file.

6.5.1 Directory Index

Each web page on the WWW has a unique URL which can be used to uniquely

identify that page. But web servers on the other hand would serve the default page

when a directory is requested. This is known as the DirectoryIndex page which would

be sent by default if a directory is requested. In such a case the URLs www.foo.com

and www.foo.com/index.html, although different URLs, refer to the same page as the

web server at foo.com would send index.html whenever a directory is requested.

Thus if a user bookmarks www.foo.com/index.html but then visits the page by

entering the URL www.foo.com there is no indication that the user visited a

bookmarked page. Unfortunately the http protocol has no features whereby one can

get the web page document name and so a solution to this problem does not exist.

The same situation occurs with different server names such as www.foo.com or

foo.com. Both URLs can lead to the same page.

6.5.2 Bookmark URLs with Attribute Value pairs

A similar problem to the above is due to the attribute value pairs that a URL can

contain. A simple approach can be that of excluding these attribute value pairs, but

 - 91 -

many dynamic webpage’s content is bound to a value held in one of these attributes.

Due to this the attributes value pairs cannot be excluded. The biggest problem arises

when a value of one of the attributes changes which does not change the page

contents. Such values can be a cookie string or a colouring scheme value which is

commonly encoded inside of these attribute value pairs. A minor change to one of

these values would lead to a different URL, hence no match with the bookmark

anymore. Unfortunately a solution to such a problem does not exist because the

nature of the attribute cannot be known.

6.6 Summary

This chapter started off with a series of tests which ensured that HyperBK worked as

expected according to these tests. The second part was an evaluation of the

HyperBK which consists of an evaluation of the classification algorithm and the See

Also results. This section then explained the problems that were found in the

evaluation namely: pages with no text, different categories for the same topic, how to

improve the classification and problems with http URLs.

 - 92 -

Chapter 7: Conclusion and Future Work

HyperBK is an alternative bookmark manager for Mozilla Firefox. Unlike the standard

bookmark features present in other browsers HyperBK tries to make sense of the

categories and the bookmarks. It adopts a number of features to make it different

from the standard bookmark managers present in browsers. First of all each

bookmark can reside only once inside of the bookmark file. Each bookmark, apart

from its name and URL is represented by the original page title, and a page

thumbnail. Together with this HyperBK keeps a copy of the bookmarked page in the

local cache in case the web page is offline. In the case the bookmarked page is

offline a search query is sent to Google to try to relocate the lost bookmark file.

HyperBK offers a number of features to help the user in having an organized

bookmark file. One feature is the bookmark verification utility which verifies the

bookmarks and checks the status of each. Another tool (Divide Category Wizard)

pops up when a bookmark category grows too large, to assist the user in dividing the

category. Another feature is the ‘See Also’ function which generates an automatic

query to locate pages similar to a category. The search query (SE Referrer) that the

user used to locate a page that is subsequently bookmarked is also stored with the

bookmark.

The idea of HyperBK is not to force the user to have an organized bookmark file but

to help him in doing so. HyperBK will not create categories automatically, it is still the

user’s responsibility to create the categories and start dividing bookmarks into these

categories. HyperBK will only offer a suggestion to the most appropriate category and

suggest the last category bookmarked into if fails.

Regarding the History HyperBK divides it into topics like the bookmark categories. It

adopts the scenario as if all pages visited would be bookmarked. This divides the

pages the user visits into topics unlike the standard method adopted by browsers

which use time and domain name to divide the pages.

 - 93 -

7.1 Results Achieved
In chapter 6 an evaluation of the classification and see also algorithms was

conducted. The classification results obtained are quite promising and in many cases

the algorithm made a good match (67%). In fact one can say that the keywords that

are extracted and represent a particular category are accountable for these results.

One can add that when the matching fails in most cases the second candidate to be

suggested would be the match. This gives an indication that the method suggested in

section 6.4.2 would be quite useful as most probably the user will find the matching

one out of the bulleted list.

An interesting result is the near hits i.e. when the suggested category is the parent of

the equivalent match in the user’s bookmark file. Now in HyperBK’s implementation

each category is treated independently of other categories that are present inside of

it. This leads to the conclusion that there are cases where the content of the parent

and children is similar, and there needs to be ways of detecting how a category will

be allocated to a child category instead of its parent.

The See Also utility proved to be a good method of suggesting additional pages that

belong to a particular category. In fact the results obtained are satisfying as 41% of

the suggested results were rated as ‘Good’ and another 41% were rated as ‘Really

Good’. As only one search engine was used there is no means of checking if using

another search engine might have produced better results, similarly as Google

Directory was used then sites not listed in the directory are excluded from the results

(Blogs, News pages etc).

7.2 Aims Achieved
In section 1.2 seven aims were put forward which were required to be reached in

order to achieve project success. The aims and their results were the following:

 Providing a simple way of classifying a web document into a bookmark category:

Documents were classified into their appropriate category successfully with

67% hit according to the evaluation carried out on sample bookmark files.

 - 94 -

This evaluation was carried out on manually organised bookmarks with no

proof that they were organised in the best way. Using HyperBK on an empty

bookmark file might lead to totally different results.

 Maintaining a healthy bookmark file in an organized fashion:

The bookmark file is kept organised in various ways: Each time a bookmark

category exceeds its maximum limit a wizard is opened to help the user split

the category into two sub categories. Similarly the verify bookmark utility will

ensure that no dead bookmarks exist inside of the bookmark file.

 Easier way of locating pages in history:

Dividing the history into bookmark categories makes the history more

organised as this matches more the user’s mental representation [11].

 Better representation of bookmarks:

Each bookmark is represented by a page thumbnail which helps the user to

recognise the bookmark better [28].

 Portable solution:

Using Mozilla Firefox all functionality can be used on three different platforms

i.e. Windows, MacOS and Linux.

 Tightly coupled with browser:

Being a Firefox Extension all functionality is tightly coupled with the browser

and available from within it.

 See Also Recommendations:

See Also recommendations proved to be useful as the users in the evaluation

rated the results: 41% of them were rated as ‘Good’ and another 41% as

‘Really Good’.

7.3 Future Work
This section suggests some improvements and new features that can be introduced

in later versions of HyperBK.

 - 95 -

7.3.1 See Also

A feature in HyperBK that could be enhanced is the See Also option which gives a list

of similar pages for a particular category. In fact there is a vast amount of work that

can be done on this part of HyperBK to provide better results to the user. The

enhancement can take place on three different levels:

• Search Query Generated

• Search Engines Used

• Filtration of Results

There are various methods how the search query can be generated. In HyperBK two

methods are used which are:

• from the automatically collected keywords

• from keywords of past user-defined search queries

In each method the search query is generated by collecting the top four used

keywords in either case. This can be improved in lots of ways; one is considering that

the most popular terms are not always the best to identify a particular category. One

must also note that the method adopted does not exclude the fact that terms with the

same meaning could be added to the same query, and ideally such terms would be

included with the ‘|’ (or) symbol. This would involve adding some semantic analyzer

to analyze the semantic meaning of the words in a category

HyperBK utilises only one search engine i.e. Google, and in fact does not use the

power of other search engines. There are lots of ways in which other search engines

can be used to retrieve better results. A method described in [29] is that of using

multiple search engines, getting the results and grouping them into one. Then the top

results can be supplied to the user and this will increase recall. On the other hand to

achieve higher precision what is done in [29] is that selected documents are

extracted and a profile is generated to match the user’s preferences. In HyperBK this

profile already exists if one looks at the bookmark categories. By looking at the

bookmark categories and at the pages they represent (available in the local cache)

one can generate a detailed profile on the user. Figure 40 is a diagram adapted from

 - 96 -

[29] to demonstrate this approach and how it can be integrated into HyperBK to offer

higher precision and recall in the See Also for a particular category.

Another improvement is that of filtering the results obtained to match more what the

user requires. One method is that of removing sites which have already been visited

by taking a look at the history. Similarly using the history, sites which are similar to

the ones visited can be given a higher score as they would in many cases be more of

interest to the user.

Bookmarks File

WWW

Search
Engine

wrapper wrapper wrapper

Search
Engine

Search
Engine

query

Mozilla - FirefoxMozilla - Firefox

Prediction
Agent

Profile
Generator

features
extracted

Analyse Bookmarks

add bookmark

Categories & bookmarks

See AlsoSee Also
View

suggested
View all

Bookmarks Cache

Figure 40 Suggested See Also Method (adapted from [29])

7.3.2 Detecting Page Changes

The only way HyperBK detects that a bookmarked page has been updated is by

inspecting the header of the http response and checking the Last-Modified header

field. Unfortunately such a header field is missing in most dynamic pages. The only

 - 97 -

way to detect when a page has been updated is to compare the page contents with

the one on disk (in the local cache). There are various ways an html page can

change; some tags can change, an advertisement can be changed, or the actual

page contents can change. These all have to be considered. Once page update

detection can be performed then the following features can be introduced:

• updating the bookmark cache only when the page has been updated

• option to highlight updated content

• determine contents that change frequently in a page

Pages that are updated frequently in many cases contain news on some event or

else they would be blogs. This can give further insight on the content that really

makes up the page.

7.3.3 Support for PDF and DOC

A lot of online documents are available in pdf or word doc format. Currently HyperBK

does not parse any of the content of such documents. Being capable of parsing such

documents would enable classification of these documents into the appropriate

category.

7.3.4 Higher UI Functionality

Drag and drop are useful features for power users when it comes to moving

bookmarks from one folder to another. Similarly for deletion of bookmarks a

bookmark can be moved to a ‘Trash’ folder. Bookmarking can be extended to

dragging a link onto the Add Bookmark button, or directly into the HyperBK sidebar

onto the appropriate category.

7.3.5 Power of the Semantic Web

With the use of ontologies, classification of a web page may become much easier

than it is now as there would be no need to collect the top five terms of a page (see

section 5.3) but instead the ontologies can be used. The problem with this is that it

will take some time before web page authors will start including such semantic

related stuff in the www documents. This approach can be used in conjunction with

 - 98 -

the page keywords so that documents which have no binded ontologies can be

categorised just the same to their matching category.

7.3.6 Relation between bookmarked pages and history pages

In the current history view (ref. section 5.8.1) all pages are shown by default in the

best matched category. The filters available can filter out by date, keyword or period

but an extra filter on content might be useful. Such a filter would show only those

pages which have a direct link to the bookmark pages. Direct link indicates that the

page is a few nodes away from some bookmarked page.

History Category

filter

page

Bookmarked page

Legend
The filter would show only

these documents as they all
have a bookmarked page as

one of their children.

Figure 41 History with bookmarked pages & their relations

Figure 41 depicts this approach, where the elements inside the dotted box will be the

history list for that particular category when this particular filter is applied. This filter

 - 99 -

would exclude the other documents, which although similar and on the same topic do

not link to any bookmarked page.

The amount of computation required for such a feature is quite expensive as all

pages inside of a history category would have to be parsed and checked, but there is

another approach which can give good results and requires fewer resources. This

involves using features such as the link: and related: keywords in a search engine

query. This approach would require performing a query for each document and

getting in return a list of URLs that link to that page. Using this list the graph of the

documents in hyperspace and how they link to each other can be constructed.

Similarly using this approach this filter can be applied on any page not only

bookmarked one. This will make it possible for a user to locate a page in history if

s/he knows that some page lead to another but possible the visit times were different,

thus making it not possible to get the page using the filter by same time period.

7.3.7 Bookmark/History Sharing and Online Access

As users normally use different machines to browse the WWW it would be useful if

they could access their bookmark files from anywhere. In fact this feature has started

to gain popularity and many providers are offering such a service for free (Yahoo,

Google, Microsoft etc). The main idea would be that of having the bookmark file

being accessible remotely and at application startup this would be downloaded, and

re-uploaded on application exit. As the bookmark and history file are in RDF this is

ready to be ported from one machine to another.

Having the bookmark available at a centralised location can lead to other possible

features being offered. A simple feature would be to share the bookmarks through

anonymous means. Secondly when a user requests a ‘See Also’ query for a

particular category the system can look at similar categories from other users and

extract some of the documents obtained. Obviously there is a great deal to keep

user’s privacy at stake and each bookmark file would have to be anonymous. But on

 - 100 -

the other hand this approach can pick up pages which are categorised differently to

automatic categorization.

 - 101 -

References

[1] M. Andreessen, E. Bina, ‘Mosaic Web Browser History – NCSA’,

http://www.livinginternet.com/w/wi_mosaic.htm [28th April 2006]

[2] ‘IE 7.0 - A history of browsers’,

http://www.quirksmode.org/browsers/history.html [28th April 2006]

[3] ‘Firefox 1.0 released | TG Daily’

http://www.tgdaily.com/2004/11/09/firefox_1/index.html [28th April 2006]

[4] Robert Hobbes' Zakon, Zakon Group LLC, ‘Hobbes' Internet Timeline - the

definitive ARPAnet & Internet history’,

http://www.zakon.org/robert/internet/timeline/ [28th April 2006]

[5] D. Abrams, R. Baecker, M. Chignell, (1998) ‘Information Archiving with

Bookmarks: Personal Web Space Construction and Organization’. In

Proceeding of CHI’98

[6] W. Jones, H. Bruce, S. Dumais, (October 2001) ‘Keeping Found Things Found

on the Web’. In Proceedings of ACM’s CTKM’01, Tenth International

Conference on Information and Knowledge Management, 119-126

[7] D. Abrams & R. Baecker, (1997) ‘How people use WWW Bookmarks’. ACM

SIGCHI 1997 Conference

[8] L. Tauscher, S. Greenberg, (March 1997) ‘Revisitation Patterns in World Wide

Web Navigation’. In Proceedings of the Conference on Human Factors in

Computing Systems CHI'97.

 - 102 -

[9] S. Kaasten, S. Greenberg, (March 2001) ‘Integrating Back, History and

Bookmarks in Web Browsers’. Conference on Human Factors in Computing

Systems.

[10] S. LeeTiernan, S. Farnham, L. Cheng, (April 2003) ‘Two Methods for Auto-

Organizing Personal Web History’. CHI '03 extended abstracts on Human

factors in computing systems.

[11] J. Gemmell, G. Bell, R. Lueder, S. Drucker, C. Wong, (December 2002)

‘MyLifeBits: Fulfilling the Memex Vision’. In Proceedings of the tenth ACM

international conference on Multimedia

[12] BookmarkTracker, http://www.bookmarktracker.com [28th April 2006]

[13] ikeepbookmarks.com, http://www.ikeepbookmarks.com [28th April 2006]

[14] P. Kokosis, V. Krikos, S. Stamou, D. Christodoulakis, (June 2005) ‘HiBO: A

System for Automatically Organizing Bookmarks’. In Proceedings of the 5th

ACM/IEEE-CS joint conference on Digital libraries

[15] Check&Get - Bookmark Manager, http://activeurls.com/en/ [28th April 2006]

[16] M. Hascoet, ‘Navigation and interaction within graphical bookmarks’. University

of Paris-sud, France. http://citeseer.ist.psu.edu/296052.html

[17] H. Li, K. Yamanishi, (July 1997) ‘Document Classification using a Finite Mixture

Model’. In Proceedings of the 35th annual meeting on Association for

Computational Linguistics.

[18] D. Shen, Z. Chen, Q. Yang, H. Zeng, B. Zhang, Y. Lu, W. Ma, (July 2004)

‘Web-page Classification though Summarization’ In Proceedings of the 27th

 - 103 -

annual international ACM SIGIR conference on Research and development in

information retrieval.

[19] Martin Porter, ‘Porter Stemming Algorithm’

http://www.tartarus.org/martin/PorterStemmer/ [28th April 2006]

[20] J. Novovicova , ‘Text Document Classification’,

http://www.ercim.org/publication/Ercim_News/enw62/novovicova.html [28th April

2006]

[21] G. Salton, (1968) ‘Automatic Information Organization and Retrieval’. McGraw-

Hill, New York, 18.

[22] C.J. van Rijsbergen, (1979) ‘Information Retrieval’ – ‘Chapter 3 Automatic

Classification’, http://www.dcs.gla.ac.uk/Keith/Chapter.3/Ch.3.html [28th April

2006]

[23] ‘Naïve Bayes Classifier’

http://www.absoluteastronomy.com/reference/naive_bayes_classifier [28th April

2006]

[24] ‘Latent Semantic Analysis’

http://www.absoluteastronomy.com/reference/latent_semantic_analysis [28th

April 2006]

[25] Melodie Grima (February 2003) ‘BMAC – Bookmark Management system with

Automated Control, Literature Review’ Unpublished

[26] ‘JavaScript - Wikipedia, the free encyclopedia’ http://en.wikipedia.org/wiki/Js

[28th April 2006]

 - 104 -

[27] ‘thecounter.com The Full-Featured Web Counter with Graphic Reports and

Detailed Information’, http://www.thecounter.com/stats/2006/March/browser.php

[28th April 2006]

[28] S. Kaasten, S. Greenberg, C. Edwards, (2001) ‘How People Recognize

Previously Seen Web Pages from Titles, URLs and Thumbnails’. Report 2001-

692-15; Dept. of Computer Science, Univ. of Calgary, Alberta, Canada, 2001.

[29] M. Montebello, (August 1998) ‘Optimizing Recall/Precision scores in IR over the

WWW’. In Proceedings of the 21st annual international ACM SIGIR conference

on Research and development in information retrieval.

 - 105 -

Bibliography

‘XULPlanet.com’ - http://www.xulplanet.com

‘Mozilla Developer Center – MDC’ - http://developer.mozilla.org

Nigel McFarlane, (2003) ‘Rapid Application Development with Mozilla’, Prentice Hall

PTR

Nigel McFarlane, (2005) ‘Firefox Hacks’, O’Reilly

Peter D. Hipson, (2005) ‘Firefox and Thunderbird: Beyond Browsing and Email’, Que

 - 106 -

Glossary

ASCII American Standard Code for Information Interchange

COM Component Object Model

CSS Cascading Style Sheets

DOM Document Object Model

HTML Hypertext Markup Language

IR Information Retrieval

RDF Resource Description Framework

RSS Rich Site Summary

SOAP Simple Object Access Protocol

TF Term Frequency

URI Uniform Resource Identifier

URL Uniform Resource Locator

WWW World Wide Web

XML Extensible Markup Language

XPCOM Cross Platform Component Object Model

XUL XML User Interface

 - 107 -

Appendix A: Further Implementation Details

RDF Datasources

Bookmarks
Name Property
Bookmark Name http://home.netscape.com/NC-rdf#Name
Page URL http://home.netscape.com/NC-rdf#URL
Page Title http://home.netscape.com/NC-rdf#Page
Bookmark Visit Count http://home.netscape.com/NC-rdf#VisitCount
Page Favicon http://home.netscape.com/NC-rdf#Icon
Bookmark Add Date http://home.netscape.com/NC-rdf#BookmarkAddDate
Bookmark Last Visit Date http://home.netscape.com/WEB-rdf#LastVisitDate
Page Keywords (stemmed) http://home.netscape.com/NC-rdf#Keywords
Page Keywords http://home.netscape.com/NC-rdf#OrigKeywords
Page Referrer http://home.netscape.com/NC-rdf#Referrer
URL in cache http://home.netscape.com/NC-rdf#ShortcutURL
Thumbnail URL http://home.netscape.com/NC-rdf#Image

Fast Bookmarks
Name Property
Fast Bookmark Name http://home.netscape.com/NC-rdf#Name
Page URL http://home.netscape.com/NC-rdf#URL
Page Title http://home.netscape.com/NC-rdf#Page
Fast Bookmark Add Date http://home.netscape.com/NC-rdf#BookmarkAddDate
Page Favicon http://home.netscape.com/NC-rdf#Icon

History
Name Property
Page Title http://home.netscape.com/NC-rdf#Name
Page URL http://home.netscape.com/NC-rdf#URL
Page Last Visit Date http://home.netscape.com/WEB-rdf#LastVisitDate
Page Keywords (stemmed) http://home.netscape.com/NC-rdf#Keywords
Page Keywords http://home.netscape.com/NC-rdf#OrigKeywords
Page Referrer http://home.netscape.com/NC-rdf#Referrer
Page Visit Counts http://home.netscape.com/NC-rdf#VisitCount

 - 108 -

Common
English Words

1 the
2 of
3 to
4 and
5 null
6 in
7 is
8 it
9 you

10 that
11 he
12 was
13 for
14 on
15 are
16 with
17 as
18 com
19 his
20 they
21 be
22 at
23 one
24 have
25 this
26 from
27 or
28 had
29 by
30 hot
31 but
32 some
33 what
34 there
35 we
36 can
37 out
38 other
39 were
40 all
41 your
42 when
43 up
44 use
45 word
46 how
47 said
48 an
49 each

50 she
51 which
52 do
53 their
54 time
55 if
56 will
57 way
58 about
59 many
60 then
61 them
62 would
63 write
64 like
65 so
66 these
67 her
68 long
69 make
70 thing
71 see
72 him
73 two
74 has
75 look
76 more
77 day
78 could
79 go
80 come
81 did
82 my
83 sound
84 no
85 most
86 number
87 who
88 over
89 know
90 water
91 than
92 call
93 first
94 people
95 may
96 down
97 side
98 been
99 now

100 find
101 any

102 new
103 work
104 part
105 take
106 get
107 place
108 made
109 live
110 where
111 after
112 back
113 little
114 only
115 round
116 man
117 year
118 came
119 show
120 every
121 good
122 me
123 give
124 our
125 under
126 name
127 very
128 through
129 just
130 form
131 much
132 great
133 think
134 say
135 help
136 low
137 line
138 before
139 turn
140 cause
141 same
142 mean
143 differ
144 move
145 right
146 boy
147 old
148 too
149 does
150 tell
151 sentence
152 set
153 three

154 want
155 air
156 well
157 also
158 play
159 small
160 end
161 put
162 home
163 read
164 hand
165 port
166 large
167 spell
168 add
169 even
170 land
171 here
172 must
173 big
174 high
175 such
176 follow
177 act
178 why
179 ask
180 men
181 change
182 went
183 light
184 kind
185 off
186 need
187 house
188 picture
189 try
190 us
191 again
192 animal
193 point
194 mother
195 world
196 near
197 build
198 self
199 earth
200 father
201 head
202 stand
203 own
204 page
205 should

 - 109 -

206 country
207 found
208 answer
209 school
210 grow
211 study
212 still
213 learn
214 plant
215 cover
216 food
217 sun
218 four
219 thought
220 let
221 keep
222 eye
223 never
224 last
225 door
226 between
227 city
228 tree
229 cross
230 since
231 hard
232 start
233 might
234 story
235 saw
236 far
237 sea
238 draw
239 left
240 late
241 run
242 don't
243 while
244 press
245 close
246 night
247 real
248 life
249 few
250 stop
251 open
252 seem
253 together
254 next
255 white
256 children
257 begin

258 got
259 walk
260 example
261 ease
262 paper
263 often
264 always
265 music
266 those
267 both
268 mark
269 book
270 letter
271 until
272 mile
273 river
274 car
275 feet
276 care
277 second
278 group
279 carry
280 took
281 rain
282 eat
283 room
284 friend
285 began
286 idea
287 fish
288 mountain
289 north
290 once
291 base
292 hear
293 horse
294 cut
295 sure
296 watch
297 color
298 face
299 wood
300 main
301 enough
302 plain
303 girl
304 usual
305 young
306 ready
307 above
308 ever
309 red

310 list
311 though
312 feel
313 talk
314 bird
315 soon
316 body
317 dog
318 family
319 direct
320 pose
321 leave
322 song
323 measure
324 state
325 product
326 black
327 short
328 numeral
329 class
330 wind
331 question
332 happen
333 complete
334 ship
335 area
336 half
337 rock
338 order
339 fire
340 south
341 problem
342 piece
343 told
344 knew
345 pass
346 farm
347 top
348 whole
349 king
350 size
351 heard
352 best
353 hour
354 better
355 true .
356 during
357 hundred
358 am
359 remember
360 step
361 early

362 hold
363 west
364 ground
365 interest
366 reach
367 fast
368 five
369 sing
370 listen
371 six
372 table
373 travel
374 less
375 morning
376 ten
377 simple
378 several
379 vowel
380 toward
381 war
382 lay
383 against
384 pattern
385 slow
386 center
387 love
388 person
389 money
390 serve
391 appear
392 road
393 map
394 science
395 rule
396 govern
397 pull
398 cold
399 notice
400 voice
401 fall
402 power
403 town
404 fine
405 certain
406 fly
407 unit
408 lead
409 cry
410 dark
411 machine
412 note
413 wait

 - 110 -

414 plan
415 figure
416 star
417 box
418 noun
419 field
420 rest
421 correct
422 able
423 pound
424 done
425 beauty
426 drive
427 stood
428 contain
429 front
430 teach
431 week
432 final
433 gave
434 green
435 oh
436 quick
437 develop
438 sleep
439 warm
440 free
441 minute
442 strong
443 special
444 mind
445 behind
446 clear
447 tail
448 produce
449 fact
450 street
451 inch
452 lot
453 nothing
454 course
455 stay
456 wheel
457 full
458 force
459 blue
460 object
461 decide
462 surface
463 deep
464 moon
465 island

466 foot
467 yet
468 busy
469 test
470 record
471 boat
472 common
473 gold
474 possible
475 plane
476 age
477 dry
478 wonder
479 laugh
480 thousand
481 ago
482 ran
483 check
484 game
485 shape
486 yes
487 hot
488 miss
489 brought
490 heat
491 snow
492 bed
493 bring
494 sit
495 perhaps
496 fill
497 east
498 weight
499 language
500 among
501 click
502 www

http://www.world-
english.org/english
500.htm

 - 111 -

Appendix B: Evaluation Details

For the evaluation to take place a website was used to submit bookmark files and to

get feedback from the volunteers on the ‘See Also’ results. This was the best way to

keep the volunteers anonymous and have an easier method of submission of

bookmark files.

Bookmark file submission

The bookmark submission page (Figure 42) was required so that volunteers could

submit bookmark files anonymously. Html bookmark files were accepted, which are

the format Microsoft IE and Firefox export to. Once the bookmark file was uploaded

the system returned a unique ID to the volunteers through which they could identify

themselves. This ID was used in the second part of the evaluation which involved the

‘See Also’ recommendations.

Figure 42 Bookmark File Submission Page

 - 112 -

See Also

Once that bookmark file was imported into HyperBK and each bookmark was visited

then a See Also query was generated for around 3-4 random categories that are

present in the bookmark file.

Each volunteer was then asked to visit the page shown in Figure 43 and here s/he

was required to enter the ID which was returned when the bookmark file was

submitted. On entering of the ID and clicking on the Go button the following page

(Figure 44) was displayed.

Figure 43 See Also Evaluation Login Page

Figure 44 See Also Evaluation

 - 113 -

In this page a table is shown which consists of 3 columns. The first column is the

name of the category that the equivalent See Also query was generated for. The

second was the link to the query which would open a new window with a Google

Directory Search. The third column is the score that is required to be adjusted

according to how the search results are. The score to select was one out of the

following:

• Useless - Results are of no use

• Good - Results are Good

• Really Good - Totally Satisfied with Results Obtained

• Prefer my own search - Results are good but I could have done better

(possibly adding/removing a keyword)

Once clicking on the Set button the result is stored. The above procedure had to be

done for each category listed. This completed the See Also Evaluation so that the

results could be examined.

Development

These webpages were developed in PHP v5. The first page was a simple upload file

script. The bookmark file once uploaded was renamed to the ID (5digit) generated for

that particular volunteer. This ensured that there were no duplicate copies of the

bookmark names and that the volunteer was kept anonymous.

The See Also data (user id, category name, category see also link and score) were

stored in an Microsoft Access database and then using sql queried and displayed in

the html according to the ID given.

All of these files can be found on the CD attached with this document in the folder

‘evaluation’.

 - 114 -

Appendix C: HyperBK - User Manual

Welcome to HyperBK, a new and innovative bookmark and history manager for

Mozilla Firefox. The HyperBK extension is designed to be used by anybody as a

better way of maintaining the bookmarks and an easier way of locating past visited

pages.

1.1 Installation
Installation is very easy; the only prerequisite is that you have Firefox 1.5 installed on

your system be it Windows, Linux or MacOS. To install the extension simply visit

http://hyper.iannet.org and click on ‘Install Now’. This will popup a dialog like Figure

45 and after a delay of four seconds the Install Now button will become active making

it possible click it and install HyperBK.

Figure 45 Install Caption Dialog

Firefox will need to be restarted in order to complete the installation.

 - 115 -

1.2 Welcome Wizard

Figure 46 Welcome Wizard Page 1

Once HyperBK has been installed, the first time Firefox is run, a wizard (Figure 46)

will pop up. This wizard will be used to set some initial parameters for HyperBK.

Pressing on next will open the next page (Figure 47).

Figure 47 Welcome Wizard Page 2

 - 116 -

In this wizard page enter a Google developer key. This can be obtained from

www.google.com/apis. This key is used in the see also and bookmark relocation. If

no Google developer key is available then just leave this entry empty. It can also be

entered from HyperBK preferences later on. The second option is required if you

want to still view the standard Firefox bookmark menu.

Please note that in any way HyperBK will tamper with the original Firefox bookmarks.

All new bookmarks will be stored in separate files, and if the necessity arises

uninstalling HyperBK will regain normal Firefox operation.

Figure 48 Welcome Wizard Page 3

Figure 48 shows the final wizard page. The option to export the Firefox bookmarks is

useful in case you want to import them into HyperBK. Unselect it if you do not want to

export the Firefox bookmarks.

1.3 Import Bookmarks
To import bookmarks from an html file do the following:

1. Go to Tools…HyperBK Other…Import Bookmarks

 - 117 -

2. Select the file you want to import. This file will be shown in the window

3. Select Yes to import the bookmarks

For HyperBK to use its full capabilities then each bookmark must be visited at least

once. This can be done using the First Bookmark Tour available from

Tools…HyperBK Other…First Bookmark Visit Tour.

Figure 49 Tour All Bookmarks Prompt

When the tour is selected a dialog (Figure 49) will be popped up. Click on OK to tour

all bookmarks that have not yet been visited. Image loading is disabled throughout

the tour to make the webpages load faster.

Figure 50 Stop Tour Window

The tour can be stopped by clicking on the ‘Stop Tour’ button in the window shown in

Figure 50. Clicking to stop the tour will automatically reset the image loading so that

images will now load once again. You can easily stop and resume a tour, as in this

tour only bookmarks that have not yet been visited will be actually visited.

 - 118 -

1.4 Adding Bookmarks

Figure 51 Add Bookmark Dialog

To add a bookmark press Ctrl-D, click the ‘Bookmark This Page…’, or click on ‘Add

Bookmark’ on HyperBK toolbar. On clicking any of these commands the dialog

shown in Figure 51 is displayed.

This dialog consists of the following:

• Page Thumbnail

• Bookmark Name

• Bookmark Name Reduce Button

• Bookmark Page title

• Bookmark Page URL

• Category Tree

 - 119 -

• New Folder Button

• Bookmark in Last Bookmarked Category Button

• OK and Cancel Buttons

Using the classification algorithm the most ideal matching category will be selected.

In case that the classification yields to no result then the last category a bookmark

was added to will be selected. There is a button which will be used to bookmark in

the last category bookmarked in. Clicking on this button will automatically bookmark

in the category displayed in the button name.

Figure 52 New Bookmark Folder Dialog

The New folder button is used to create a new bookmark category. Clicking on it will

open up the New Bookmark Folder Dialog (Figure 52) which can be used to create a

new category. Simply enter the desired name and select the parent folder from the

folder tree. Clicking on OK will create the folder.

 - 120 -

1.5 Bookmarks and Fast Bookmarks
Bookmarks are forever, fast bookmarks are not. This is the main difference between

the two. If a page needs to be bookmarked for the next 2 or 3 sessions just add it in

the fast bookmarks, no need to fill the bookmark file with useless bookmarks.

The fast bookmark is a linear list of bookmarks, no categories, no thumbnails, and

the name of a page cannot be changed. The only thing to take care of is that the list

can only contain a limited number of bookmarks and if this limit is exceeded the first

page in will be removed. The number of bookmarks that can reside in the fast

bookmarks can be adjusted from the HyperBK Preferences (see section 1.12).

1.5.1 Top Bookmarks List

This is a list of the top 10 accessed bookmarks. This list is located in the HyperBK

bar.

1.6 HyperBK Browser Components

1.6.1 HyperBK Bookmark Menu

Figure 53 HyperBK Bookmark Menu

This menu (Figure 53) contains all the bookmarks that are available in HyperBK.

Each submenu is a unique category which has these three commands at the top:

 - 121 -

• Bookmark Here

Add the currently loaded page to this category. (No dialog is displayed)

• Tour Bookmarks

Start a tour of the bookmarks that reside in that category. The tour can be

moved to the next/previous webpage from the and on HyperBK toolbar.

• See Also

Perform a search query to Google to retrieve a set of similar pages to the

current ones in this category. (See section 1.13)

1.6.2 HyperBK Sidebar

The browser sidebar (Figure 54) displays the bookmarks and history and has search

features to search from the bookmark or history. Views can be changed by clicking

on the View button and either selecting bookmarks or history. Double clicking on any

entry of the tree will open the bookmark in the browser window. This sidebar can be

displayed using the Shift-F2 key sequence.

For bookmarks it is possible to right click and select one of the following commands

from the context menu.

▫Open

 Open the bookmark in the current window

▫Start tour from here

 Starts a bookmark tour, the tour can be moved to the

next previous from the and on the HyperBK

toolbar.

▫Sort

 Sorts the entries in that bookmark folder

▫Rename

 Renames the bookmark/category

▫Delete

 Deletes the bookmark/category

 Figure 54 HyperBK Browser Sidebar

 - 122 -

1.6.3 HyperBK Toolbar

Figure 55 HyperBK Browser Toolbar

The HyperBK toolbar (Figure 55) can be displayed using the Shift-F1 key sequence

or else by View…Toolbars…HyperBK Toolbar.

The toolbar contains the following elements:

• Bookmarks

o Add – pops out Add Bookmark Dialog

o Manager – opens Bookmark Manager with page thumbnails

o Top – menu with top visited bookmarks

• Fast Bookmarks

o Add – add fast bookmark

o Menu – menu with fast bookmarks

• Tour

o Previous

o Next

• View History – opens History Viewer

• Mail Link – emails current open page (as link)

1.7 HyperBK Bookmark Manager

Figure 56 HyperBK Bookmark Manager Window

 - 123 -

This bookmark manager (Figure 56) contains all the required features that a simple

bookmark manager has, which include:

• Create New Folder

• Rename

• Move

• Delete

• Move Up

• Move Down

• Other

o Sort

o Export

• Filter

Available Filters

o By Visited Times

Enter the score of the number of times a bookmark has been visited. This is

useful if the top bookmarks need to be viewed.

o By Keyword

Perform a search for a bookmark that matches the keyword. This keyword can

match anything from page title, page URL, and page keywords.

o By Date

Enter the date to view pages that were visited on a specific date.

 - 124 -

1.8 HyperBK Bookmark Manager with Page Thumbnails

Figure 57 HyperBK Bookmark Manager (with page thumbnails) Window

Figure 57 shows another bookmark manager. It is much more user-friendly and

contains the features as the previous one. It takes a different approach to the

bookmarks as this time there is a page shot of the bookmark. The features offered

are like the previous bookmark manager, which include Delete, Rename, and Move.

Other options include:

• SE Referrer: This link refers to the search query used to find the page, in case

the page was bookmark after a search engine query.

• Load from local Cache: This would load a copy of the web page which resides

in the local cache. Useful option when the bookmark is offline.

1.9 Verify Bookmarks
This is a tool to verify which bookmarks are still active, which have been updated and

those that are offline. To open this utility goes to Tools…HyperBK Verify. This will

open a window like the one shown in Figure 58.

 - 125 -

Figure 58 HyperBK Bookmark Verify Utility Window

Pressing on the Verify button will initiate a check of all bookmarks to and see the

result of each bookmark. The operation can be stopped at any time using the Stop

button. The other functions that are available are

o Open Updated which will open all bookmarks that were updated

o Delete which will delete the selected bookmark

o Relocate which will try to relocate the bookmark, by constructing a search

query to Google.

1.10 Divide Category Wizard
Whenever the bookmarks found inside a category exceed the allowable limit, then

the Divide Category Wizard (Figure 59) will be popped open. This will divide a

particular category into two. You can set the limit that a category can hold in HyperBK

Preferences.

 - 126 -

Figure 59 Divide Category Wizard Page 1

Click on Next will open the next wizard page (Figure 60) to be able of creating a new

category.

Figure 60 Divide Category Wizard Page 2

 - 127 -

Enter a folder name and select the location where the folder will be created. You can

opt for automatic or manual division. In both cases the changes can be adjusted to

match your wishes.

Figure 61 Divide Category Wizard Page 3

Use the and arrows to move the bookmarks from the old category to the new

one.

 - 128 -

Figure 62 Divide Category Wizard Page 4

Click on Finish will save all changes done and divide the category into two new

categories, having a bookmark file much more organized.

1.11 History Viewer
The history viewer window (Figure 63) shows the list of visited sites in the past 20

days (or more, according to the value set in preference. see section 1.12).

The history viewer divides the web pages visited according to the bookmark

categories that one has. Search Pages results are classified automatically in a

special category named “Search Pages”, the rest uncategorized sites are placed in a

special category named “Unclassified”.

 - 129 -

Figure 63 HyperBK History Window

There are a series of filters that can be applied to the history in order to reduce the

number of entries. These filters include:

• Date

This filter will show all pages that were visited since the date specified.

• Section

Only one category is shown in the history tree.

• Visit Count

Filter by the number of visits to a particular page.

• Keyword

Search for any pages that match the given keyword. The title, page

URL and page keywords are used.

• And a special filter: Visited in Same Period

This filter is available by right clicking on any history entry. It will filter

out and show only pages that were visited 2 hours before and after

visiting that particular page.

These filters can be applied by selecting the filter from the Filter menu in the toolbar

and entering the parameter that is required in the drop down box. Pressing on the

View button will enable the filter and showing all items that match the specified

criteria.

 - 130 -

Right clicking on a menu will display a context menu which has the options of

Opening a history page, or highlighting the page Referrer. The Page Referrer refers

to the page that leads into the page.

1.12 HyperBK Preferences
The preferences window opened from Tools…HyperBK Preferences has a number of

parameters which can be set to make HyperBK adjust to the user’s requirements.

Figure 64 HyperBK Preferences Page 1

The preferences that can be set are the following:

• Firefox Integration (Figure 64)

o Disable Toolbar Tips

Use this option to disable toolbar tips.

o Hide Bookmarks Menu

Hide the original Firefox bookmark menu.

o Show Fast Bookmarks Menu

Show Fast Bookmarks Menu on the window menu bar.

o Max Script Run Time

Maximum time that a script is allowed to run.

 - 131 -

Figure 65 HyperBK Preferences Page 2

• HyperBK Specific Prefs. (Figure 65)

o Allow to ReBookmark

Be allowed to re-bookmark once a bookmark is already present.

This will not result in a new duplicate bookmark but a move and

update of the already present bookmark.

o Automatically Reduce Bookmark Name

Instead of having the bookmark name as the title this is

automatically reduced.

o Max Bookmarks in Folder

Maximum number of bookmarks that are allowed in a folder, the

default is 30.

o Max Fast Bookmarks

Maximum number of fast bookmarks that can be hold in fast

bookmark list, the default is 30.

o Max History Days

Maximum number of days to keep in history, the default is 20

days.

o Offer in page tooltip suggestions

Offer tooltip suggestion on links by marking links that have

already been bookmarked. The ‘On Same Path’ option will

 - 132 -

highlight those bookmarks where a page on the same path

matches (domain) but not the page itself.

o See Also Algorithm

See also algorithm to use. There are two:

• Using the SE Referrer

• Using keywords from the automatic computed query

Figure 66 HyperBK Preferences Page 3

• Search Engines Parameters (Figure 66)

o Google Developer Key

This is the Google developer key which is required to use some

of Google services (specifically in See Also). To apply for one

please go to www.google.com/apis

o Search Engine URLs

This is a list of search engine pages URLs. The default value will

match Google, Yahoo and MSN Search. It is a ; delimited string

where each part consists of two pieces. The first being part of

the search URL while the second delimited by ‘,’ is the query

variable.

 - 133 -

1.13 See Also
 This option will perform a search to a particular search engine and retrieve a

set of URLs that are similar to the category. There are two ways this search query is

computed. The first one uses the page keywords that are automatically picked out of

a page while the second method uses search terms that were used to find the

bookmarked pages in the first place (from the SE Referrer).

Figure 67 No SE Referrer Prompt

If none of the pages in a particular category have an SE Referrer than the method will

be switched to the other automatically. If the dialog shown in Figure 67 appears, click

on OK to generate a query out of the automatically picked keywords.

The automatically picked keywords will search Google directory instead of the whole

WWW (Figure 68).

Figure 68 See Also Window (top keywords)

 - 134 -

On the other hand the see also using the SE Referrer (previous search terms) will

perform a search in the whole www as shown in Figure 69.

Figure 69 See Also Window (SE Referrers)

 - 135 -

Appendix D: Contents of CD-ROM

├report Report Folder
│ ├hyperBkreport.pdf This Report (PDF Format)
│ └hyperBkReport.doc This Report (Microsoft Word Format)
├extension Extension Folder
│ ├chrome Chrome Folder (includes all source code)
│ ├components Components folder (PearlCrescent)
│ ├defaults Defaults folder (includes default preferences)
│ ├platform Platform Specific Folder (Components)
│ ├chrome.manifest Extension Chrome Manifest File
│ └install.rdf Extension Install RDF file
├other Other Folder
│ └Firefox Setup 1.5.0.3.exe Firefox setup for Windows
├evaluation Evaluation Folder
│ ├hyperbkEval Bookmark files Collected
│ │ ├bkeval Bookmark files used in evaluation
│ │ └bknoteval Bookmark files not used in evaluation
│ └phpscripts PHP scripts & DB (for evaluation)
├hyperE.xpi Extension Installation Package
└info.txt Author Details and Information

